

Multi-objective management for fish & humans

Historical inlet observations – 1973-2008

Avg closure: 6 days / Avg time between closures: 43 days

Estuarine Mouth / Inlet States

Lagoon Conceptual Model

Parameters

h_I=lagoon water level Q_r=river discharge

Q_c=outlet channel discharge

Q_s=seepage discharge

Q_e=evaporation from lagoon

Processes

- Q_r= Q_c + Q_e + Q_s (averaged over days)
- · No sediment transport within outlet channel
- Active sediment transport outside outlet channel

Closure Conditions: Salt

Open inlet, tidal conditions

Closed inlet, lagoon conditions

Source: Bodega Marine Lab

NMFS Biological Opinion Performance Criteria

- Estuary water levels May 15 to October 15
 - Target: 7 feet NGVD
 - Less than 9 ft NGVD flood stage
 - Greater than 4 ft NGVD for habitat benefit
- Temporary sand channel
- Minimize artificial breaching
- Economic feasibility
- Public safety
- Comply with existing regulatory permits
 - Up to 2,000 yd³ of excavation

Beach Crest Profiles

Historic Inlet Alignment

Behrens et al., 2009

Wave Interactions with Jetty

DRAFT

FEASIBILITY OF ALTERNATIVES TO THE GOAT ROCK STATE BEACH JETTY FOR MANAGING LAGOON WATER SURFACE ELEVATIONS:

Existing Conditions

Prepared for Sonoma County Water Agency

December 31, 2012

Jetty Study Components

- Jetty Structure
- Groundwater Permeability
- Ocean Wave Conditions
- Beach Morphology
- Inlet Morphology
- Flood Risk
- Develop Alternatives
- Evaluate Alternatives

Evolution of the Jetty Structure

Jetty Components

Groundwater Seepage

Beach & Jetty Groundwater Monitoring

Why? To better understand:

- Size & composition of buried jetty sections
- Thickness of sand & bedrock
- Groundwater seepage through beach

How? Monitoring Wells:

- Up to 6 monitoring wells
- 2" well casing
- Top of well buried in sand
- Wells to be instrumented
- Monitored/maintained once per month
- Public will have access to beach during construction
- Restricted access in immediate vicinity of well construction
- 2 to 4 days

Beach & Jetty Subsurface Monitoring

How? Geophysical Surveys

- Portable Equipment: No permanent installation required
- Public will have access to beach
- Restricted access in immediate vicinity of survey activity
- 1 to 2 days per survey
- Researchers:
 - Lawrence Berkeley National Lab
 - NorCal Geophysical

Electromagnetic Monitoring

Beach Morphology: Influence of Adjacent Construction

- Historic maps indicate that Goat Rock was only connected to the shore by a tombolo (low-lying sand spit) prior to jetty construction.
- Shoreline accretion of 1.5 ft/yr on GRSB since 1930.
- Shoreline *erosion* of 0.8 ft/yr at neighboring beach to the south since 1930.

Inlet Morphology

Flood Risk Assessment

Table 7-5. Summary of potential flood stages in the Estuary resulting from the three flood scenarios described above.

Scenario	Estimation Method	Estuary Flood Stage at Shoreline (ft NGVD)
Scenario 1 (Dry-season flood)	Gumbel Dist. of Jenner peak stages during closures¹	14.8
	Beach topographic data used for crest height reference	14.5-17.5
	Runup estimated for extreme wind waves	1.5-3.7
	Total:	16.0-21.2
Scenario 2 (Wet-season flood)	FEMA (2008) BFE Comparison with limited lagoon stage data during recent floods	13.4
Scenario 3 (Wave transmission and runup)	Assumed MHHW tidal level in the Estuary	7.1
	Estimated depth-limited wave transmission cutoff height	6
	Runup on estuary shorelines using Hunt (1959)	3.9-18.0
	Total ² :	11.0-25.1

¹Only peak stages prior to natural breach events were used.

- Wet-season (fluvial) flood may pose less flood risk than dry-season (inlet closure) flood event
- Flood risk uncertain from wave transmission

²Estimated as MHHW + runup.

Jetty Alternatives

- No Action
- Notch Jetty
- Demolish In-Place
- Remove Access Elements
- Remove Groin
- Remove Full Jetty

Jetty Alternatives

