Sacramento Regional Water Bank
October 2021
Introduction to the RWA

- Mission of the RWA
- JPA of 20 water purveyors
- 20th Year
- What we do: Planning, Advocacy, Programs
- Received over $100 Million in grant funding for our members
Future Challenges
Future Challenges

Changes in Timing of Inflow to Folsom

- **Historical Data**: 2.58 MAF
- **Mid-Century (2035-2064)**: 2.57 MAF, 30 days earlier
- **End-of-Century (2070-2099)**: 2.50 MAF, 35 days earlier

Inflow to Folsom could occur **30 to 40 days earlier** on average.
The Water Bank is just one component of an integrated approach to climate resiliency.
Historically the system independently relied on snow, surface and groundwater reservoirs.

Need to transition to a 21st century system.
DWR Bulletin 118

Groundwater level estimated trend 1998-2018 (feet/year):

- **Green**: Increased 0 to 2.5
- **Yellow**: No significant trend
- **Orange**: Decreased 0 to 2.5
- **Red**: Decreased > 2.5
Figure 5 Reservoir Capacity vs. Groundwater Basin Capacity

Reservoir Capacity

50 million acre-feet
Total cumulative storage capacity of California’s major reservoirs

Groundwater Basin Capacity

850 million to 1.3 billion acre-feet
Total storage capacity in California’s 515 groundwater basins

California’s 515 groundwater basins can store far more water than the state’s reservoirs combined. Overall, groundwater storage outstrips surface storage even after taking into account that less than half the groundwater is available for use by people because it is either too deep to be pumped economically or of poor quality.
How would the Water Bank work?

- Store water in wet periods by offsetting existing groundwater demand (in-lieu recharge) and other direct recharge methods
- Recover water from basin in dry periods, leaving precious surface water in system to meet other needs