

1873 Delta: Long residence time Marsh connections Two rivers connect to bay Waterways dendritic

Modern delta Short residence times **Rip-rapped Cross Delta flows** Rare San Joaquin connection to bay Waterways web-like

Most fishes follow salinities

What Biologically Changes As Flow Increases?

Adult spawners move up: Salmon Green and White Sturgeon Longfin smelt Delta smelt Splittail American shad Pacific herring

Young fish move down: Salmon Longfin smelt Delta smelt Splittail American shad Striped bass

Young Marine fish move up: Starry flounder White croaker Pacific halibut

How much water do fish need?

Higher trophic levels show many relationships of abundance to freshwater flow

Source: Kimmerer 2002MEPS Lower trophic levels show few relationships of abundance to freshwater flow

Fish- X₂ Relationships From Kimmerer 2002

Delta smelt

Longfin smelt

Threadfin shad

Stock - Recruitment Effects

Have Delta Smelt Dropped Below Critical Population Levels?

2000 $R^2 = 0.88$ 2001 2002 Juvenile (TNS) 2004 2003 Recent Trend 2005 2006 2007 Alee effect?

Adults (FMWT)

Source: Anke Mueller-Solger (DWR)

PHYSICAL & CHEMICAL FISH HABITAT

FISH ABUNDANCE

Fall "habitat quality" deteriorated

Source: Feyrer et al. (CJFAS 2007)

Other habitat stressors

- Bioassays showed little effect (<5 %) in 2005 or 2006.
- <15% <u>adult</u> delta smelt impaired
- 100 % of <u>young</u> striped bass show multiple infections

Source: Inge Werner, Swee Teh, and Dave Ostrach (UCD)

Monthly Ammonia Loads in the Sacramento River at Hood and in Effluent from the Sacramento Regional WWTP

Sources: A. Mueller-Solger, DWR; A. Jassby, in press SFEWS

Widespread blooms of the toxic alga *Microcystis* in 2007

August Levels: 1.3 million cells/mL

Core Habitat of Delta Smelt

Source: Peggy Lehman (DWR)

Water Project Losses

Fish Facilities Provide Data on Numbers "Salvaged"

Winter Salvage (Nov-Mar) 1,500 Longfin smelt 500 Delta smelt 10,000 Striped Bass 250,000 Threadfin Shad 2,500,000 0 04 94 96 **98** 00 02

Exports in acre-feet 1 acre-foot =325,851 gallons =1233 kiloliters

OMR = Old and Middle River flows

Negative Old & Middle River Flows Apparently Increase Adult Delta Smelt Entrainment

Mean Values for December-March 1993-2005

Source: Source Lenny Grimaldo (In Review)

Food Affects Summer Smelt Survival But Recent Levels Were Not Remarkable

Source: Wim Kimmerer

No Major Change in Zooplankton Biomass, But Big Change In Species

Source: Anke Mueller-Solger (DWR); IEP (2007)

Little	Ammonia	Lots
Low	Contaminants	High
Highly variable	Flow	Low and Constant
Low	"Harvest"	High
Lots	Phosphorus	Limited
Cool	Temperature	Warm
High	Turbidity	Low
CLIMATE CHANGE		
Directions		

FLaSH

Daily-Average Depth-Averaged Salinity

2011 Had High In- & Outflows and Record High Exports

... And a Westward Low Salinity Zone in the Fall. (September-October)

Some Fish Abundance Indices Improved in 2011

Some fish indices did not improve in 2011

Threadfin Shad (non-native)

Winter Run Chinook Salmon

ESA Listed since 1989

Delta smelt indices increased throughout 2011

Was the fall 2011 phytoplankton bloom unusual?

Was the fall 2011 phytoplankton bloom unusual?

Zooplankton Biomass (2)

High total zooplankton biomass in LSZ in fall 2011

Delta smelt grew well in 2011

Data and Graphs: J. Hobbs, UC Davis

What Next?

Earthquake or flood 64% chance in 50 years

1 M sea level rise (2100?)

TOP-DOWN

BIG Disclaimer:

Many graphs and data and their interpretation in this presentation are PRELIMINARY and subject to change!!!

Many thanks to everyone who provided data and graphs – all errors in display and interpretation are mine, not theirs.

2011 Was Very Wet

Results are PRELIMINARY & subject to change!

Causes of Changes in Fall Turbidity

Reduced Sediment Inputs

Continued Spread by Egeria

Source: Erin Hestir (UCD), Dave Schoellhamer (USGS)

Outflow & X2

Data: DAYFLOW Graphs: A. Mueller-Solger

Causes of Changes in Fall Salinity

Suisun Marsh Salinity Control Gates

E/I Ratios

Delta Cross

Channel

Mean number of Days with X2 west of Chipps Island (Feb-Jun)

	Critical	Dry	Below Normal	Above Normal	Wet
1930-39	108	133	150		150
1940-49		131	148	151	150
1950-59		129	126	145	150
1960-75		96	99	131	145
1976-90	7	45	117	147	129

POD & Nutrients Example: Ammonia pollution

Sewage Treatment Plants

Increasing Ammonia levels in Delta and Suisun Bay

Potential Ecosystem Effects Pelagic organisms follow salinity: The copepod *Eurytemora affinis*

Kimmerer 1998

76

Unionized ammonia is toxic to fish

- Salmonids and smelt are particularly sensitive
 - But levels generally not high enough
- Invertebrates can be affected at observed concentrations and some impacts demonstrated
- Occasional Diatom inhibition, but light usual limiter
- Phytoplankton species compositions very likely changed

Digital Map from William Bowen California Staj University Northridge

ACTUU

Ē

Francisco

Ę

Evidence of Increased Entrainment of Adult Delta Smelt During Winter

Source: IEP (2005), Grimaldo (In prep)

Zooplankton Biomass (1)

High adult calanoid copepod biomass in LSZ & Cache/DWSC in fall 2011

Clam grazing in the LSZ is higher in fall than in spring

change!

Data: IEP EMP "GRTS" & Jan Thompson, USGS; Graphs: Jan Thompson, USGS

Fall "habitat quality" matters to the delta smelt population

Fall EQ + Fall Abundance predicts juvenile production

Turbidity (1)

Monthly Secchi depths lowest in the LSZ and CS/SDWSC (= most turbid). In LSZ, lowest Secchi depths in Sep & Oct 2011.

Data: IEP FMWT Graphs: S. Slater, DFG

1994 X2 requirements

- Inflow on 8 Rivers in previous month, Feb- Jun
- Sets number of days for X2 west of each location,
 - More westward days when wet
 - Less in later months

Land Subsidence Due to Farming & Peat Soil Oxidation

- 25 ft.

Below Sea Level -30 -20 -10 -5 ft

- 5 ft.

- 20 ft.

- 15 ft.

Flows are important but so is geometry

VAMP

Vernalis Adaptive Management Program

≊USGS

VAMP

- 12 year study on delta survival of San Joaquin salmon; 5 years done
- 5 experimental flow/export combinations
- Midwater trawl, Kodiak trawl and adult ocean captures supply data

VAMP Target conditions

Flow at Vernalis (cfs)

	3200	4450	5700	7000
1500	A	B		C
2250			D	
3200				E

Exports (cfs)

Actual VAMP flows

San Joaquin River near Vernalis

VAMP Conditions (so far)

Flow at Vernalis

	3200	4450	5700	7000
1500	2002	2001		С
	2003			
	2004			
2250			2000	
3200				E

Exports

Management Implications

- Actual adaptive management
- Protective of salmon and estuarine species
- Short-term support
- Long-term implications