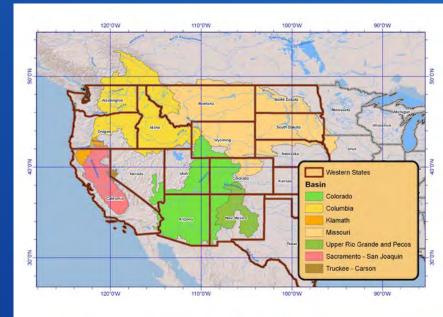
RECLANATION Managing Water in the West

Water Planning in a Future Context: Watershed Specific Climate Data and Tools

SAWPA - 4/11/2013


Kristine Blickenstaff, Ian Ferguson, Laura Condon, Tom Pruitt Subhrendu Gangopadhyay Reclamation Technical Service Center, Denver

U.S. Department of the Interior Bureau of Reclamation

Background

- Public Law 111-11, Subtitle F (SECURE Water Act, SWA, 2009) § 9503.
- Climate change risks for water and environmental resources in "major Reclamation river basins."
- Reclamation's WaterSMART (Sustain and Manage America's Resources for Tomorrow) program
 - 1. Basin Studies
 - 2. West-Wide Climate Risk Assessments (WWCRAs)
 - 3. Landscape Conservation Cooperatives (LCCs)

8 major Reclamation River Basin

SECURE – Science and Engineering to Comprehensively
Understand and Responsibly Enhance
RECLAMATION

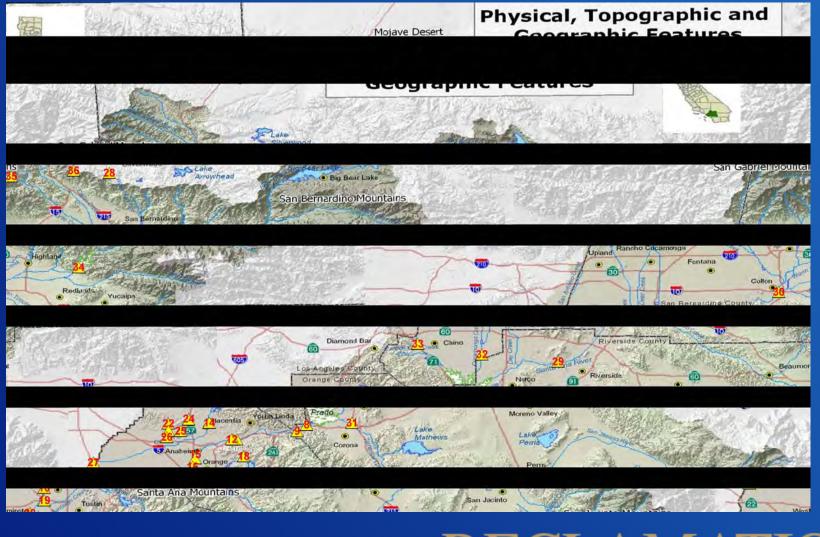
Funded Basin Studies

17 studies have been funded to date starting in 2009.

2009

- Colorado River Basin
- Milk/St. Mary Rivers Basin
- Yakima River Basin

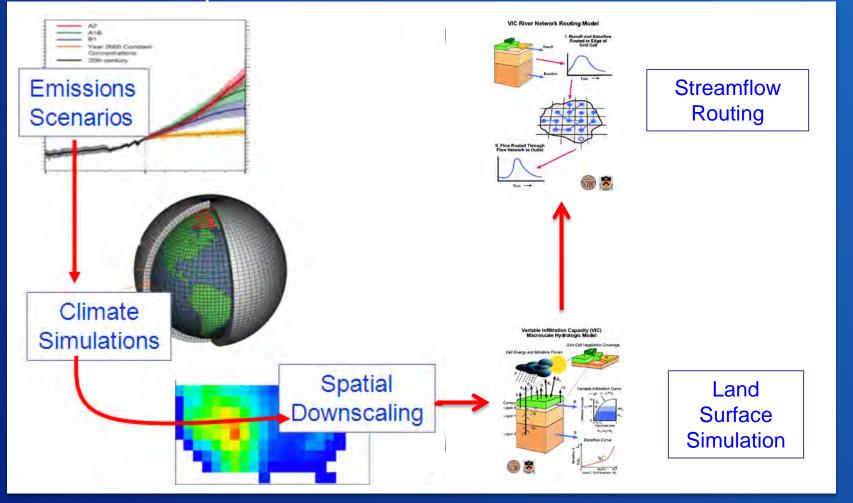
2010


- Niobrara River Basin
- Truckee River Basin
- Santa Ana River Basin
- Henrys Fork of Snake River
- S.E. California Regional Basin 2011
- Lower Rio Grande River Basin
- Santa Fe Basin
- Klamath River Basin
- Hood River Basin

2012

- Upper Washita River Basin
- Sacramento-San Joaquin Rivers
- Republican River Basin
- Pecos River Basin
- L.A. Basin

Santa Ana Watershed

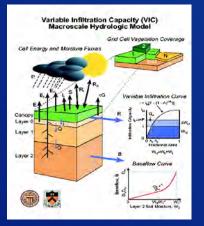


Outline

- Hydrology Projections
 - Surface Water (detail)
 - Groundwater (decision support tool)
- Decision Support Using Climate and Hydrology Projections (examples)
 - Basin-wide Hydroclimate Distribution
 - Seasonal and Annual Flows
 - Flood Frequency
 - Temperature Trends
 - Groundwater Management (decision support tool)
 - ...
- Tool Development
 - Groundwater Screening Tool
 - GHG Emissions Calculator for the Water Sector

Downscaled BCSD-CMIP3 GCM Output and Hydrologic Model Intercomparison Project Phase 3 General

Disaggregation - Coupled Model Intercomparison Project Phase 3 General Circulation Model)


West-Wide Climate Risk Assessments (WWCRA) - Hydrologic Projections (2011)

112 Transient Climate Projections...

http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections/dcpInterface.html

8 "big basin" VIC hydrology model-apps from Univ. of WA…

112 Transient Hydrologic Projections covering western U.S....

Data-service, Reclamation and broader public use

Technical Report, data-development (TSC 86-68210, March 2011)

SECURE Report to

focus on median

changes; future

scope

Analyses of Periodchanges in climate

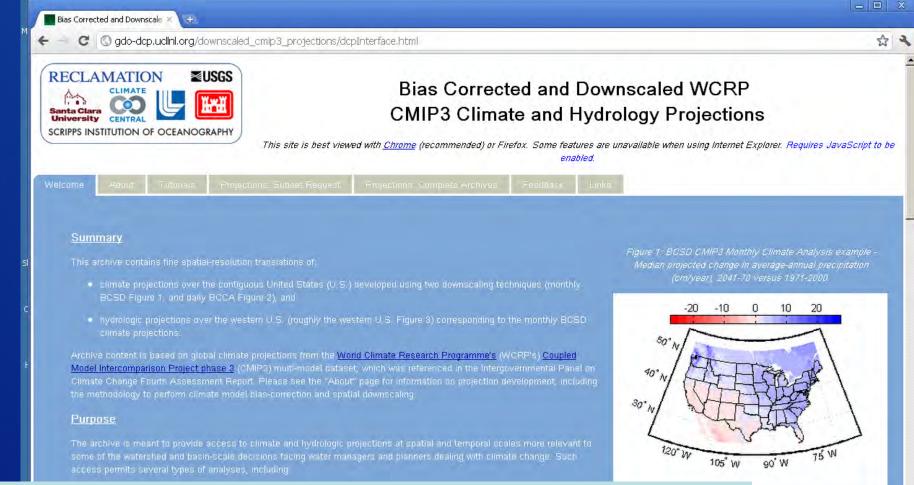
and hydrology

Congress, April 2011

reports have broader

RECLAMATION Managing Water in the West

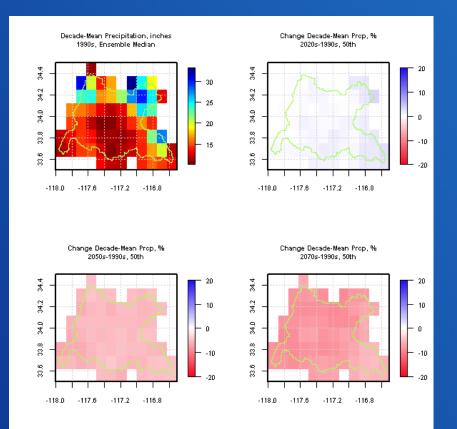
SECURE Water Act Section 9503(c) – Reclamation Climate Change and Water 2011



Technical Memorandum No. 86-68210-2011-01 West-Wide Climate Risk Assessments: Bias-Corrected and Spatially Downscaled Surface Water Projections

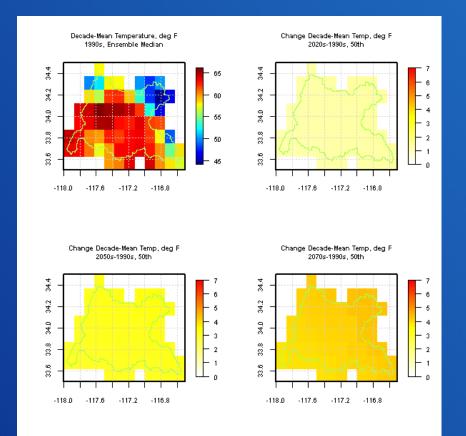
http://www.usbr.gov/WaterSMART/; http://www.usbr.gov/climate/LAMATION

Online Data Access

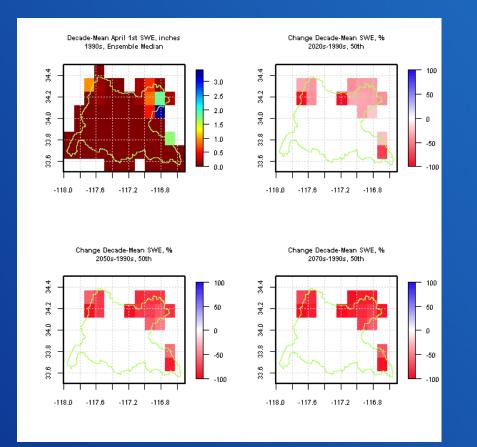


http://gdo-dcp.ucllnl.org/downscaled_cmip3_projections

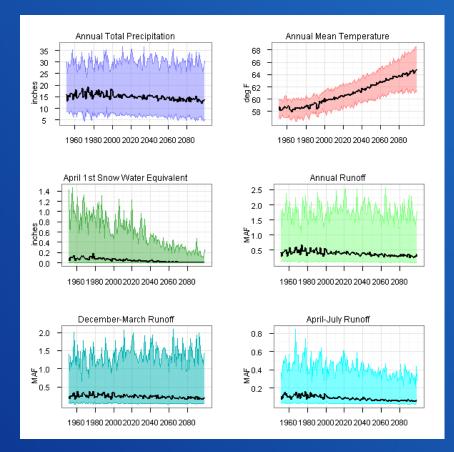
Climate Analysis example -


Hydrology Projections Spatial Distribution of Precipitation

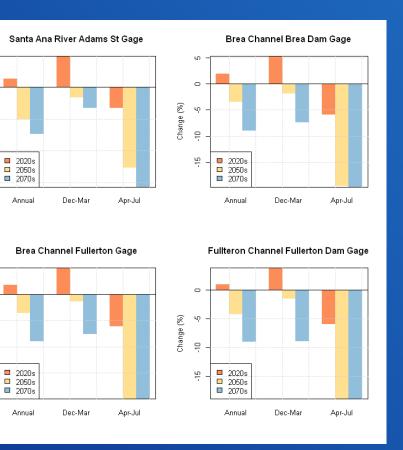
- The ensemble- median change shows some increase in prcp over the basin during the 2020s' decade from the 1990s' reference.
- By the 2050s there is decline in prcp from the 1990s reference decade.
- Increased decline in prcp continues through to the 2070s decade from the 1990s reference decade.


Hydrology Projections Spatial Distribution of Temperature (T)

 The ensemble median change for the 2020s', 2050s', and 2070s' decades relative to the 1990s shows an increasing temperature value throughout the Basin.


Hydrology Projections Snow Water Equivalent (SWE)

 Spatial distribution of April 1st SWE – persistent decline through the future decades (2020s, 2050s, 2070s) from the 1990s' distribution.


Hydrology Projections P, T, SWE, Flow

- Temporal trends solid line is the median, 5th and 95th percentile bounds.
- P longer-term somewhat decreasing trend
- T- increasing trend
- SWE decreasing trend
- Flow longer-term decreasing trend

Hydrology Projections Flow Impacts

- Annual and seasonal streamflow impacts
- 2020s increase in annual runoff and winter (Dec-Mar) runoff, decrease in springsummer (Apr-Jul) runoff from the 1990s reference
- 2050s decrease in annual, winter, spring-summer runoff from the 1990s reference
- 2070s decrease in annual, winter, spring-summer runoff from the 1990s reference

 \odot

9

8

贸

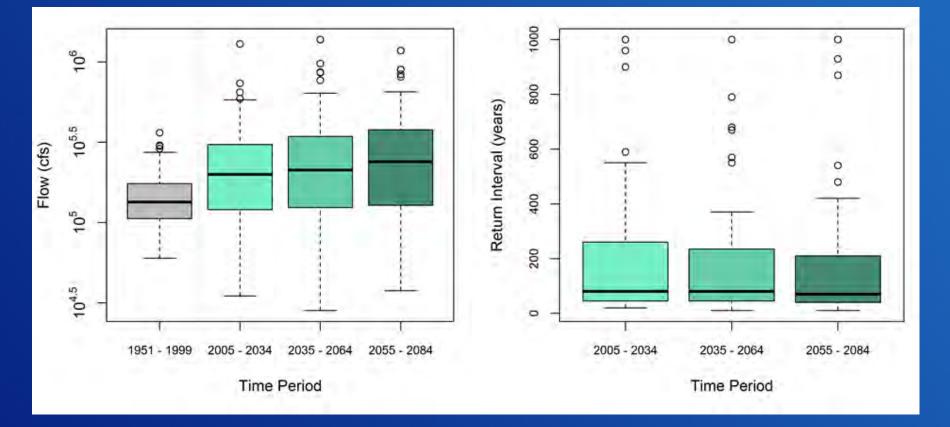
0

ιņ

9

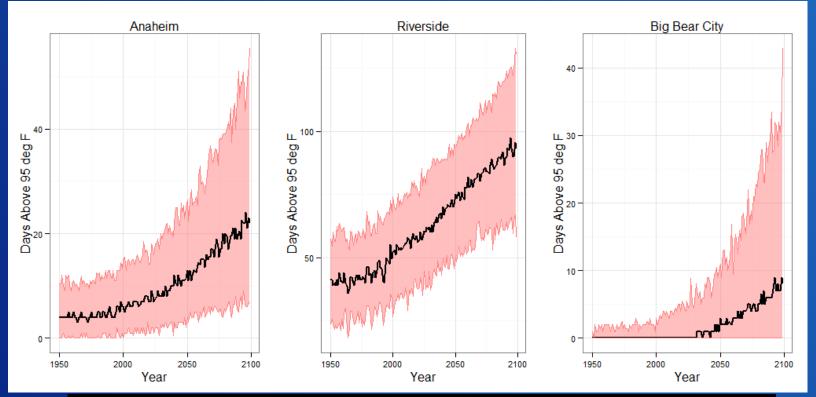
Ю

Change (%)

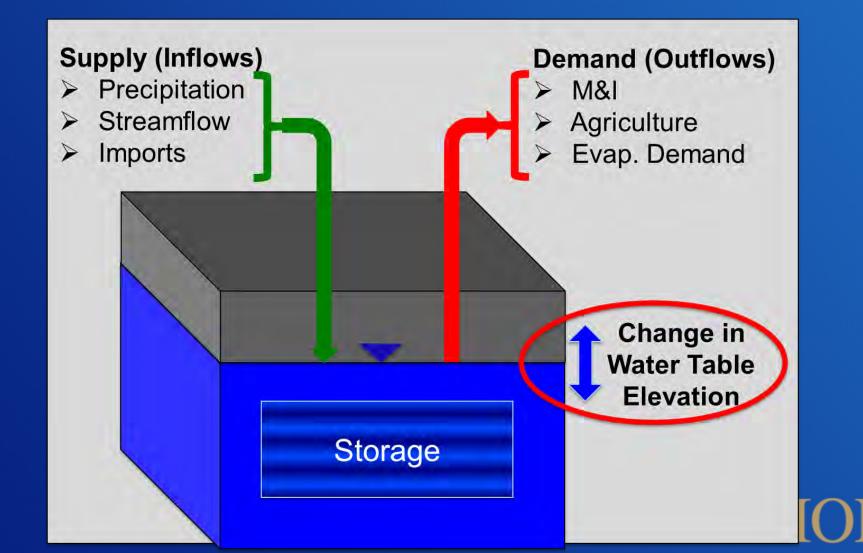

Change (%)

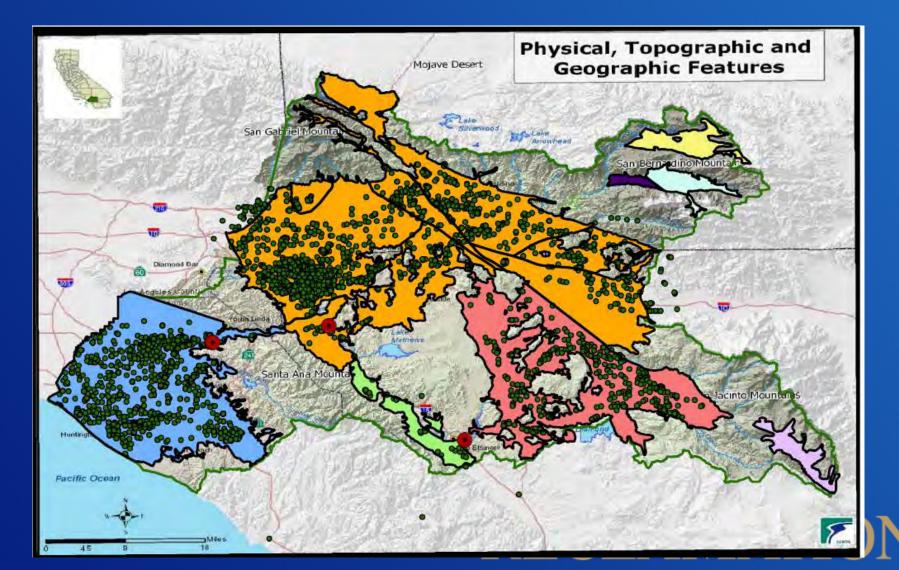
Summary of Impacts Santa Ana River Adams St. Gage

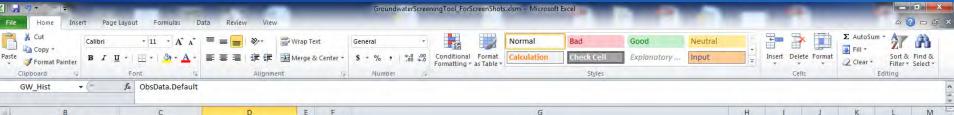
Hydroclimate Metric (change from 1990s)	2020s	2050 s	2070s
Precipitation (%)	0.67	-5.41	-8.09
Mean Temperature (deg F)	1.22	3.11	4.10
April 1st SWE (%)	-38.93	-80.40	-93.07
Annual Runoff (%)	2.60	-10.08	-14.61
Dec-Mar Runoff (%)	9.82	-3.01	-6.38
Apr-Jul runoff (%)	-6.35	-25.24	-31.39

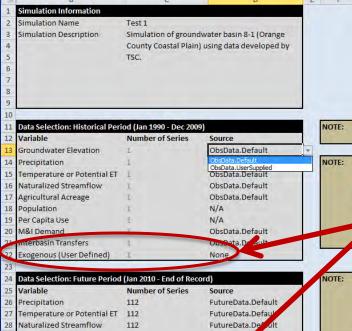

Similar analysis was done for all the 36 sites in the Santa Ana Basin

Floods – 200-year event, Prado Dam


- More severe floods in the future
- 200 year historical event is likely to be closer to a 100 year event in the future
 RFCLAMATION


Days above 95°F


	Historical	2020	2050	2070
Anaheim	4	7	12	16
Riverside	43	58	72	82
Big Bear City	0	0	2	4
	동안 동안에 여행하는 것을 것이 많다. 나는 것 같은		<u> </u>	


ECLAMATIO

SAWPA Groundwater Tool

FutureData

ureData.Default

utureData.Default

N/A

None

29

30

31

32 Demand

Read

Agricultural Acreage

Exogenous (User Defined

Population

Per Capita Use

Exogenous Variable:

Optional input that allows user to represent additional driving variables that are not included in default model.

Examples:

Forh

of th

User

(1) If

used

unit

(2) 1

See

For fi

Te

Ama

For a

Ifan

futu

exog

the

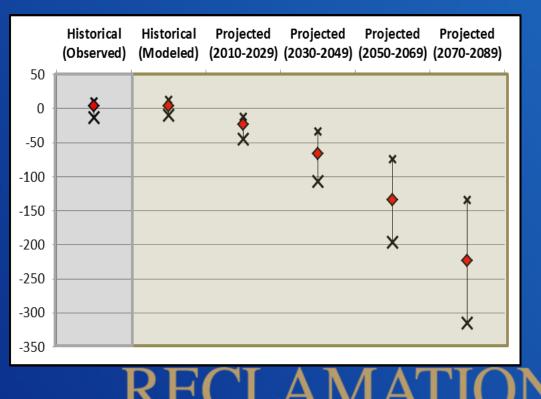
NOTE:

- Dewatering operations (e.g., Chino basin)
- Injection operations (e.g., Orange Co.)
- Recycled water
 - Many other variables may be considered.

- Key Features (what the tool does)
 - Estimates impacts of climate change on basin-scale groundwater conditions
 - Facilitates comparison of alternatives to protect groundwater resources under climate change
 - Can be used by SAWPA member agencies and stakeholder to support basin planning decisions

- Limitations (what the tool does not do)
 - Does not reflect detailed physical properties of groundwater aquifer (geometry, porosity, permeability, etc.)
 - Does not provide direct estimate groundwater deficit or surplus, which depends on aquifer properties
 - Does not provide estimate of local-scale impacts, only considers basin-scale groundwater budget

• Will a 10% reduction in M&I demand offset the impacts of climate change in my groundwater basin?


 What is the projected deficit in groundwater storage in my basin by 2050 due to climate change?

- Example:

Orange County Coastal Plain Groundwater Basin

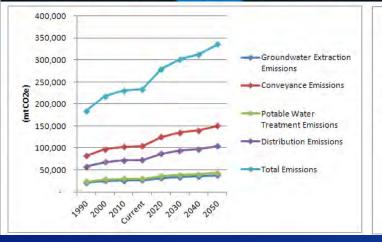
Estimated decline in basin-averaged groundwater levels due to climate change without management actions to reduce impacts

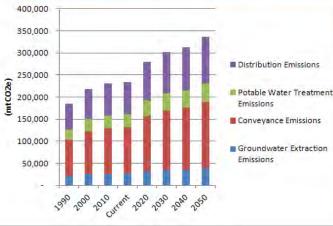
- Example:

Orange County Coastal Plain Groundwater Basin

Scenario Comparison: Management alternatives to offset projected impacts on groundwater in Orange County

Conservation


Gradual reduction of approx. 15% by 2020 (reduce per capita use from ~175 gpd to ~150 gpd)


Imported Water

Gradual increase in water imports from Colorado River and/or SWP (increase from ~30,000 AF/yr to ~105,000 AF/yr

Greenhouse Gas Emissions Calculator for the Water Sector

				Final Value	s for Compu	tation of Tot	al Annual E	missions				
	Groundwater (gpd)	Surface Water (gpd)	Groundwater Intensity (KWh/MG)	Supply & Conveyance Intensity (KWh/MG)	Treatment Intensity (KWh/MG)	Distribution Intensity (KWh/MG)	Electricity Emission Factors (kg CO2 eq./MWh)	Annual Groundwater Extraction Emissions (mtCO2e)	Annual Conveyance Emissions (mtCO2e)	Annual Treatment Emissions (mtCO2e)	Annual Distribution Emissions (mtCO2e)	Total Annual Emissions (mtCO2e)
1990	343,504,230	82,441,015	540	8900	496	1200	307.9	20,845	82,454	23,756	57,440	184,495
2000	405,596,183	97,343,084	540	8900	496	1200	307.9	24,613	97,358	28,050	67,823	217,844
2010	428,958,060	102,949,934	540	8900	496	1200	307.9	26,031	102,966	29,666	71,729	230,392
Current	435,443,663	104,506,479	540	8900	496	1200	307.9	26,424	104,523	30,115	72,814	233,875
2020	521,038,724	125,049,294	540	8900	496	1200	307.9	31,618	125,069	36,034	87,126	279,848
2030	561,755,948	134,821,427	540	8900	496	1200	307.9	34,089	134,842	38,850	93,935	301,717
2040	582,194,580	139,726,699	540	8900	496	1200	307.9	35,330	139,748	40,264	97,353	312,694
2050	625,432,500	150,103,800	540	8900	496	1200	307.9	37,953	150,127	43,254	104,583	335,917

Scenario Name: Baseline					
	Instructions				
Step 1:	After completing data entry				
	according to instructions,				
	name your scenario in yellow				
	box above and hit enter.				
Step 2:	Open GHG Scenario Manager				
	then return to this				
	worksheet.				

Click on export results.

RECLAMATION

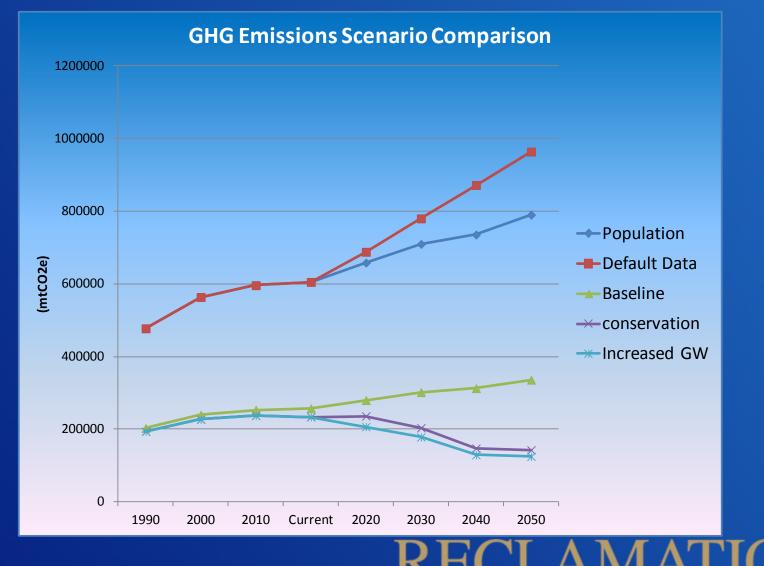
Step 2:

Greenhouse Gas Emissions Calculator for the Water Sector

– Addresses AB 32

Evaluates both supply and demand

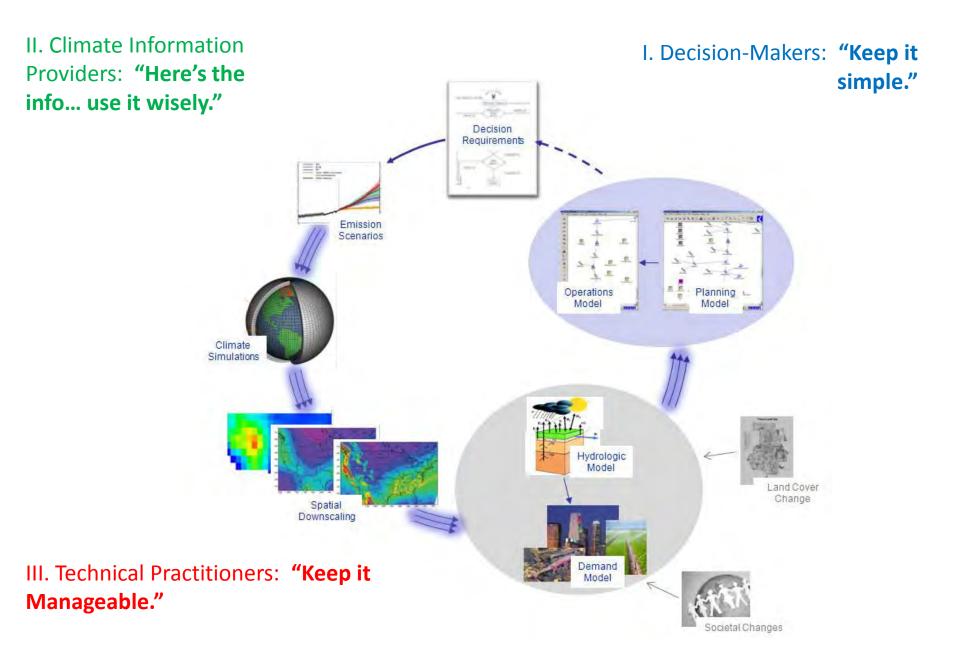
Can be used with 3 levels of data

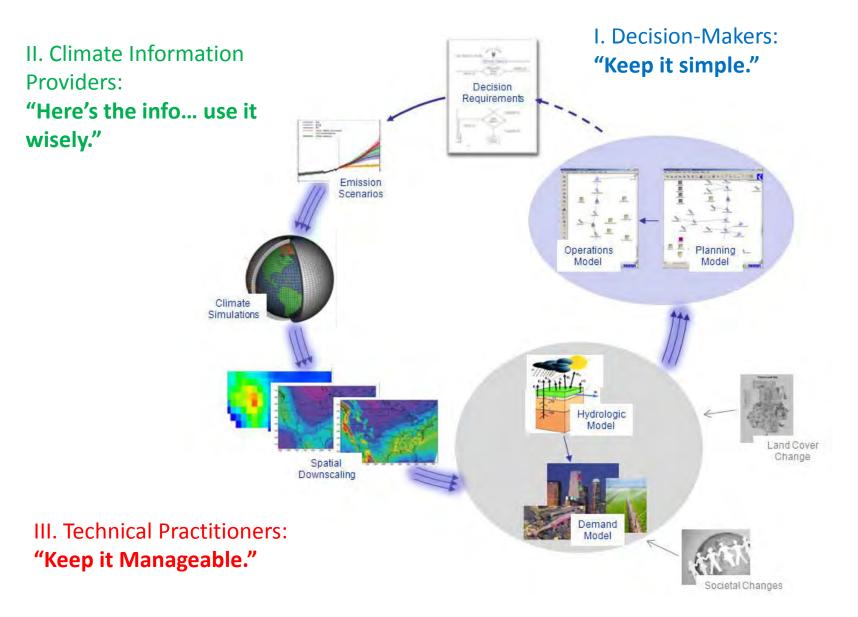

- Required Data: population data for 1990, 2000 & 2010
- Suggested Data: water supply portfolio, per capita water use, projected population, etc.
- Detail Data: monthly or annual energy and flow data can be entered for each category

- If data is not available So Cal defaults will be used

GHG Emissions Calculator

- Uses
 - Compute total annual CO2e emissions for the water sector from 1990-2050
 - Determine emission breakdown from groundwater, conveyance, treatment, distribution, and wastewater
 - Compute projected future water demand
 - Evaluate scenarios for GHG emission reduction by altering either supply or demand
- Limitations
 - Accuracy of results is dependent on input data


Greenhouse Gas Emissions Calculator Scenario Manager


Uncertainty Discussions

- Global Climate Forcings
- Global Climate Simulation
- Climate Projections Bias
- Spatial Downscaling
- Watershed Vegetation Changes
- Hydrologic Model
- •••

Other approaches to analyzing impacts

In summary, data selections and method choices are throughout the analysis...

... choices carry uncertainties, we need to understand those uncertainties, and address them in the planning process .

Water Planning in a Future Context: Watershed Specific Climate Data and Tools

SAWPA - 4/11/2013

Kristine Blickenstaff, Ian Ferguson, Laura Condon, Tom Pruitt Subhrendu Gangopadhyay Reclamation Technical Service Center, Denver