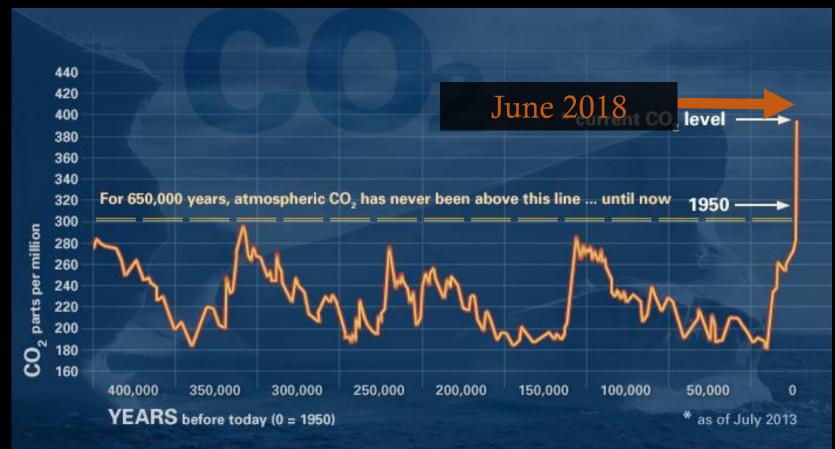

Drought, flood & wildfire amidst increasing climate whiplash: The challenging road ahead for water management in the West



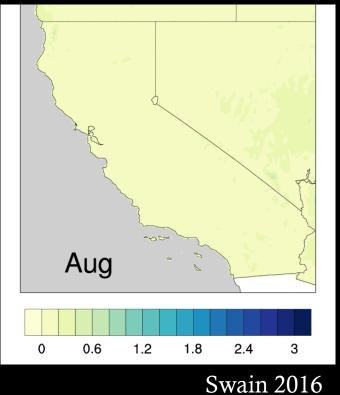
Daniel Swain dlswain@ucla.edu @Weather_West www.weatherwest.com Daniel L. Swain Water Education Foundation Water Summit September 20, 2018

"Facing Reality"

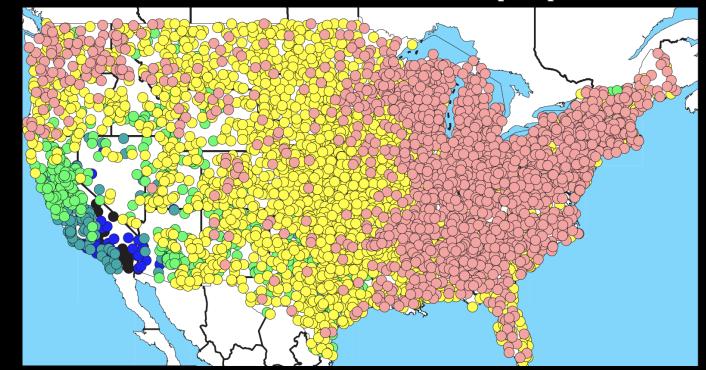
GLOBAL CLIMATE CHANGE

"Facing Reality"

- California making tremendous progress on climate mitigation
- Global leader in emissions reductions & path toward "carbon zero"


BUT...

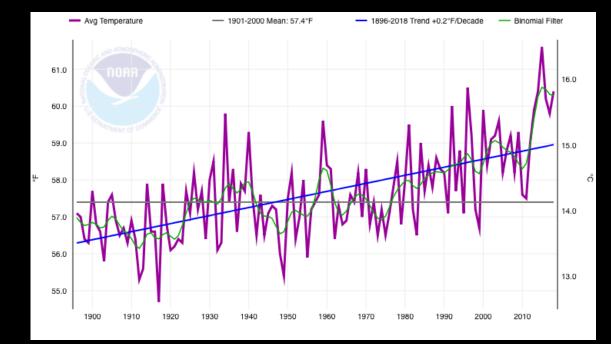
- California's actual climate future at mercy of *global* climate policy
- Pre-emptive climate adaption critical to resilient California



California's unusual climate context

Monthly precipitation

Coefficient of variation in annual precipitation

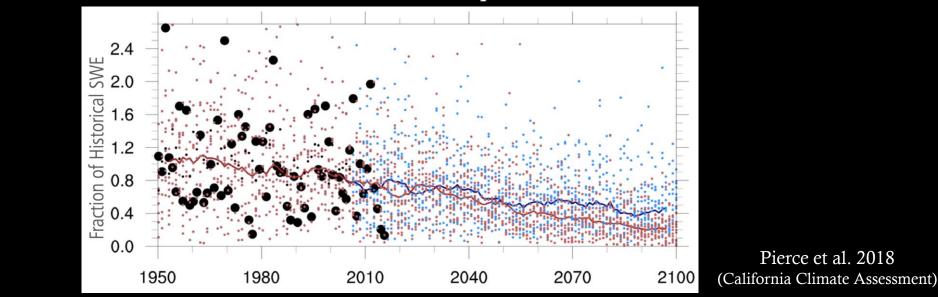

Dettinger 2011

- California exists at margin of stable subtropics/active mid-latitudes
- Strong seasonal cycle of precipitation and latitudinal gradient

Daniel Swain dlswain@ucla.edu @Weather_West www.weatherwest.com • Uniquely high year-to-year variation in precipitation; drought susceptibility

California changes so far: warmer, less snow, more flammable

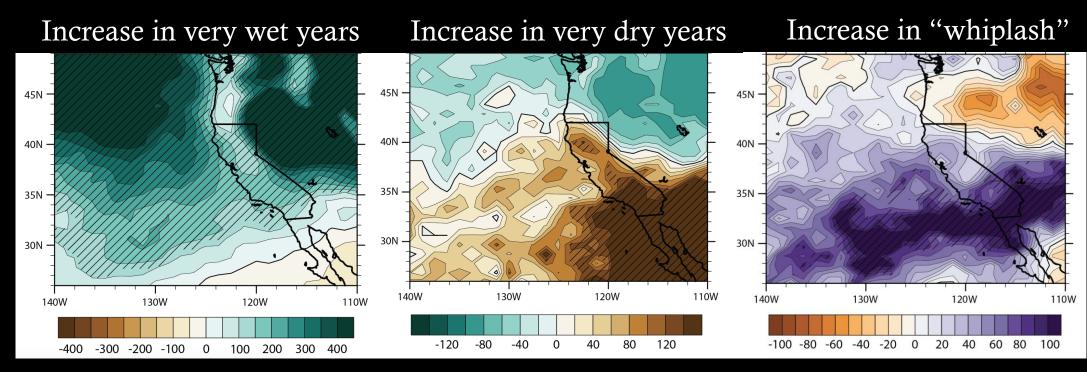
California annual average temperature (NOAA)



- California now significantly warmer than during early 20th century
- Mountain snowpack now detectably decreasing; snow lines increasing

- Large increase in wildfire size/intensity*
 - *Not just a climate signal—other human factors at play!

California changes to come: (dramatically) warmer, (much) less snow, more flammable (still), plus bigger floods


California snow water equivalent

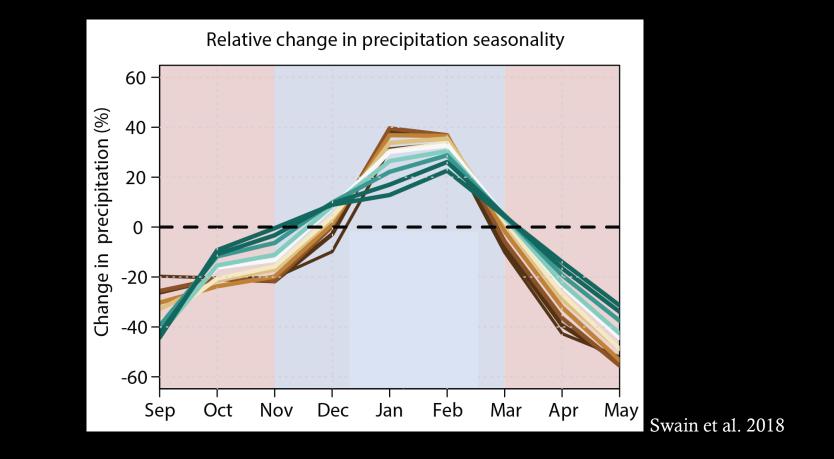
- Future warming will be much greater than observed warming to date
- Very low/zero snow years (like 2014-2015) increasingly common

Daniel Swain dlswain@ucla.edu @Weather_West www.weatherwest.com • Increasing runoff due to more rain vs. snow, plus wetter storms, will yield very large increases in peak flood volume

UCLA Increasing California "precipitation whiplash"

Swain et al. 2018

Large increase in both wet & dry extremes <u>despite little mean precip change!</u>


Why care about precipitation whiplash?

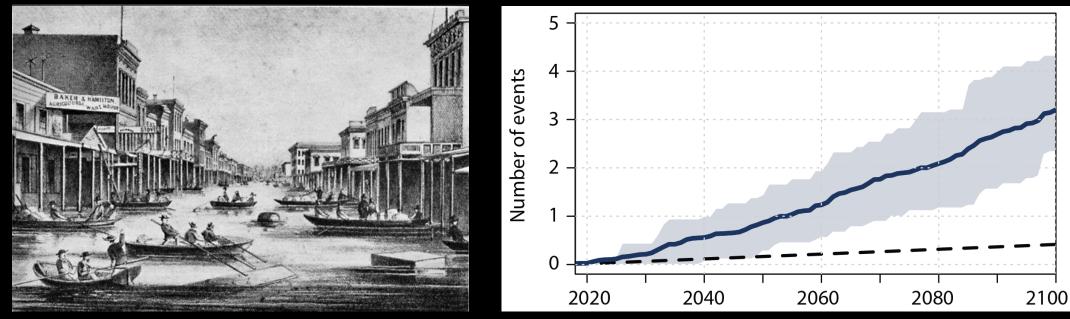
• On average, it was mild & mostly sunny with modest breezes in Dec-Jan

Daniel Swain dlswain@ucla.edu @Weather_West www.weatherwest.com • If we only consider changes in average climate, then we're largely missing the point

UCLA An (even) shorter, (even) sharper rainy season

- Drying trends in autumn & (especially) spring, strongest south
- Further "narrowing" of rainy season (w/modestly wetter winters)

Daniel Swain dlswain@ucla.edu @Weather_West www.weatherwest.com


• Key implications: wildfire risk, snowpack, ecosystem stresses, agriculture

California's "Other Big One": Month-long atmospheric river deluge

Downtown Sacramento, Jan 1862

San Francisco Chronicle

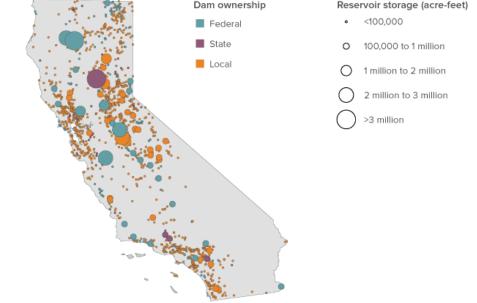
Swain et al. 2018

- California "great floods" have occurred every ~200 years
- Modern day repeat would be disastrous for California
- Greater than 50% risk of an 1862-level in next ~40 years

When it comes to future floods, we need to think big. Really big.

FADIE CLODDED OF			
EFFECT OF ACTIVITY	MAIN CLIMATE DRIVER	COST (\$ billion/year)	COMMENTS
Human mortality*	High ambient temperatures	50	Premature annual mortality (Ostro et al., 2011) translated into monetary terms using a value of a statistical life of \$7.5 million.
All sectors of the economy	Mega-flood** similar to the one that devastated California in 1861-1862	42	One recent study by Swain et al., (2018) suggests a substantial likelihood o these floods in the rest of this century
Replacement value of buildings (residential and commercial sector)	Permanent inundation	18	Assuming 50 cm (-20 in) of sea-level rise, which is in the upper range (-95th percentile) of potential sea-level rise outcomes by 2050 (Pierce et a 2018). Costs obtained from https://www.usgs.gov/apps/hera/ accessed on Jul 7, 2018.
Water supply and agriculture	Potential effect of a long drought	> 3	Assuming reductions in precipitation from 5 to 30 percent from historical conditions. Actual impacts would be much higher than \$3 billion because the economic models assume very efficient adaptation. (Herman et al, 2018 Medellín-Azuara et al., 2018).
Energy demand: residential sector	Increase temperatures	< 0.2	Increases in electricity demand (\$0.65 billion) would be compensated by reductions of demand for space heating (\$0.5 billion). (Auffhammer et al., 2018). Expected increases in energy efficiency will also lower costs even
All sectors	of the	Mega-	flood** similar to 42
economy		1 0	e that devastated
economy			nia in 1861-1862

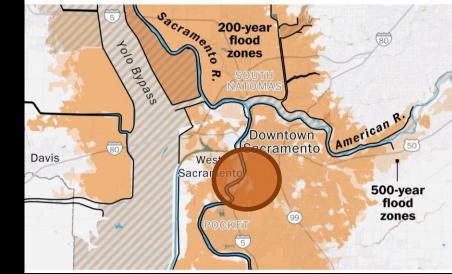
• How bad can things get?


Consider:

- New Orleans (Katrina)
- Houston (Harvey)
- North Carolina (Florence)?
- Except instead of single region, 1862 scenario affects *entire state*
- More studies underway

Dne recent study by Swain et al., (2018) suggests a substantial likelihood of hese floods in the rest of this century

A challenge for policymakers, decision-makers, and engineers


Significant dams in California

Public Policy Institute of California

"200 year" flood map for Sacramento, CA

A 200-year event could flood large swaths of California's capital. A 500-year flood could leave parts of the city buried under 20 feet of water.

Washington Post

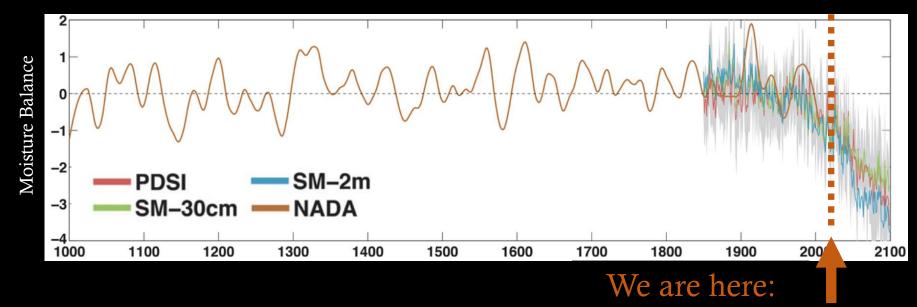
- Existing infrastructure is "under-engineered" for future climate
- "200 year" flood protection could become "25-50 year" protection

Daniel Swain dlswain@ucla.edu @Weather_West www.weatherwest.com Tension between competing flood control & drought mitigation mandates will become even more pronounced

Case study: Oroville Dam Crisis of 2017

Lake Oroville, September 2015

Oroville Dam, February 2017



- Weather/climate did not "cause" crisis. However...
- Extreme atmospheric river storm turned an engineering issue (failure of primary spillway) into crisis (headward erosion on emergency spillway)

Daniel Swain dlswain@ucla.edu @Weather_West www.weatherwest.com Historical warming increased Oroville inflows by ~30%.
What about the future? (Huang et al. 2018 (runoff), Swain et al. 2018 (precip))

Not just California: Dramatic changes underway throughout West

Rising risk of "megadrought" in American Southwest

- Permanently warmer temperatures (rather than precip) main driver of future West-wide drought risk. Megadrought?? (Cook et al. 2015)
- Over 50% of observed decline of Colorado River flow due to historical warming! (Xiao et al. 2018)
- 90% of West now experiencing snowpack decline (Mote et al. 2018)

Daniel Swain dlswain@ucla.edu @Weather_West www.weatherwest.com

UCLA

Closing thoughts

- In order to face reality, we have to adapt to ongoing and future climate changes (which are inevitable)
- Increasing extremes (especially flood & wildfire) will likely push existing systems to their limits; perhaps beyond
- Major opportunities may arise amidst increasing whiplash:
 - Sustainable floodplain management (beyond"flood control")
 - Sustainable groundwater management (co-manage drought & flood risk)
 - New policies & practices surrounding wildfire & emergency response
 - Ecosystem management that has urban/carbon co-benefits

Announcing a novel partnership between:

UCLA OES • University of California, Los Angeles (Institute of the Environment and Sustainability)

National Center for Atmospheric Research ullet(Capacity Center for Climate and Weather Extremes)

The Nature Conservancy

Thoughts on California weather & climate on the Weather West blog: www.weatherwest.com

For even more frequent real-time updates, follow me on Twitter: @Weather_West