GROUNDWATER IN THE DAIRY ENVIRONMENT

Water Education Foundation – Groundwater Tour September 24-25, 2015

Thomas Harter

Watershed Science Center University of California, Davis Contact: ThHarter@ucdavis.edu

http://groundwater.ucdavis.edu

Breaking down the issue:

Stakeholders

Science

Environmental Issue

Law

Regulator

Background

- Groundwater v watersheds
- Dairy and groundwater impacts
- Regulations
- Monitoring

Includes Curry and Roosevelt Counties in NM and Bailey, Castro, Dallam, Deaf Smith, Hale, Hartley, Lamb, and Parmer Counties in TX.

represent specific locations of dairy operations. Counties with fewer than 1,500 cows are not depicted with dots. Data obtained from the 2012 USDA Census of Agriculture.

United States Aquifer Map

http://nationalatlas.gov/mapmaker

U.S. Sand & Gravel Aquifers

Unconsolidated sand and gravel aquifers at or near the land surface. Semiconsolidated sand and gravel aquifers.

Sand and gravel aquifers of alluvial and glacial origin are north of the line of continental glaciation.

Sediments

=> result of erosion, water, wind, lake deposition, ocean bay deposition

fractured bedrock of California's mountain ranges

Groundwater Contribution to Streamflow: Baseflow

Baseflow (% of Streamflow)

Ground Water Regions (Heath, 1984)

UN World Water Development Report II, 2006

Shah, Villholth, Burke, "Groundwater: a global assessment of scale and significance", IWMI, 2007

Population Map of the World & Major GW Withdrawal Centers

Modified with world population map from: Nature 439, 800 (16 February 2006) | doi:10.1038/439800a

Example: GW Nitrate

(I1) Mobilizable Nitrogen Loads

Note: 10 mg N/I = 10 kg N/km²/yr for each 1 mm/yr recharge

UN World Water Development Report II, 2006

Nitrate Contamination Study Area

Estimated Groundwater Nitrate Loading

Nitrate Contamination Will Persist

- Nitrate contamination will worsen for years/decades
- Direct remediation of groundwater is extremely costly

RED: ABOVE THE NITRATE MCL (45 mg/L) DARK RED: ABOVE TWICE THE NITRATE MCL (90 mg/L)

Estimated locations of the area's roughly 400 regulated community public and state-documented state small water systems and of 74,000 unregulated self-supplied water systems. Source: Honeycutt et al. 2012; CDPH PICME 2010.

Figure 7-14
Model for shallow groundwater

Predicted nitrate concentration, in milligrams per liter as N

Model for deep groundwater used as drinking water (50-m simulation depth)

Predicted nitrate concentration, in milligrams per liter as N

Predictions Using Groundwater Nitrate Loading

Exceedance Probability, Nitrate above 45 mg/L (MCL)

Background

- Groundwater v watersheds
- Dairy and groundwater impacts
- Regulations
- Monitoring

Farm Sources of Diffuse GW Pollution: Example - Dairies

Sources of N:

- Feedlot
- Lagoon
- Storage areas
- Manured fields
- Fertilized fields
- Various crops
- Septic system

Dairy Manure Annual Salt Loading to Groundwater

Irrigation Water Source	Salt Input, kg ha ⁻¹		Annual Salt
	Winter Forage 130 – 2	Summer Corn 20 µS/cm	Loading kg ha ⁻¹
East Side Sources	86	310	404
Wastewater + East Side	1356 1.200 – 1	2284 - 900 uS/cm	3615
West Side Sources	828	2983	3794
Wastewater + West Side	2000	4792	6452

Computed using "Watsuit" Model. Crop uptake is considered. Agronomic manure application rates. Scenario: Annual Summer Corn/Winter Forage Double Cropping with 250 and 150 lbs per acre of N inputs, respectively; annual water inputs are rainfall 12 inches ((30.48 cm), winter irrigation 10 inches (25.4 cm), and summer irrigation 36 inches (91.44 cm); and leaching fraction is 0.3. (UC Committee of Consultants Report, UC ANR Communications, 2007; <u>http://anrcatalog.ucdavis.edu/DairyCattle/9004.aspx</u>).

Pollutants by Dairy Management Unit

-0.6

-150

-1.4

upgrdnt

upfield

consi

MONTUNT4

panel.

multiple

low-field

Harter et al., J. of Contam. Hydrology April 2002

Courtesy, Brad Esser & Jean Moran, LLNL, 2009

Assessment: Field Trials & Modeling Transport and Fate of Nitrate and Salts

=> improved management practices

VanderSchans et al., Ground Water, 2009

for further publications: http://groundwater.ucdavis.edu/gw_201.htm

Dairies: Antibiotic Use – By Primary Class

Estimated amount by primary classes of antibiotics

Light blue shows the maximum amount i.e. if used on all the heifers and cows every day.

Watanabe et al., Env.Sci.Tech, 2010

Microbes in Wastewater

Frequency of Indicator Bacteria in Dairy Groundwater

Harter et al., 2014; Li et al, 2015 (in preparation)

Steroid Hormones

Steroid Hormone Concentrations at a Dairy Farm

Kolodziej et al., Env.Sci.&Tech., 2004

DOC and DBP-forming Potential

Chomycia et al., J.Env.Qual., 2007

Background

- Groundwater v watersheds
- Dairy and groundwater impacts
- Regulations
- Monitoring

RCRA Groundwater Monitoring

- Affected parties:
 - TSDFs (transport, storage, and disposal facilities)
 - Permitted facilities vs. Interim facilities (existed prior to RCRA rules)
 - MSWFs (municipal solid waste landfills
- Detection monitoring
 - 1 or more monitoring wells upgradient
 - 3 or more monitoring wells downgradient
 - Objective: SSI (statistically significant increase)?
- Compliance monitoring / Assessment monitoring
 - Objective: groundwater protection standards exceeded?
- Corrective Action
 - Treatment
 - Clenaup
 - Cease and desist

http://www.epa.gov/osw/hazard/tsd/td/ldu/financial/gdwater.htm http://www.epa.gov/solidwaste/nonhaz/municipal/landfill/financial/gdwmswl.htm

Regulatory Approaches to Groundwater Protection and Monitoring

Modified from: EOS, Transactions, AGU 2001

Regulatory Approaches to Groundwater Monitoring

Colors Represent Concentration Results Empty Circles = Non-detect See Scale (left) for Concentration Values "<MDL" - detected, but not quantified

from: Parker, Beth L., Cherry, John A. & Swanson, Benjamin J., 2006. A Multilevel System for High-Resolution Monitoring in Rotasonic Boreholes. Ground Water Monitoring & Remediation 26 (4), 57-73. doi: 10.1111/j.1745-6592.2006.00107

from: http://www.ems-i.com

What Does a Monitoring Well Monitor in Irrigated Agriculture?

Horizontal flow: q = K * i (Darcy's law)

Vertical flow: r (recharge)

Monitored source length, s = d * q/r

Monitoring Well: Source Area Recharging vs. Non-Recharging Source

Non-recharging source

Recharging source

MW Well Design: Varying Water Table in Heterogeneous Aquifer

(a) Screen (length ~ 20') located at water table, but not intersecting sand layer

regional gw flow

(b) Screen (length ~ 20') located in sand layer

Monitoring Design for Varying Water

UC Davis Multilevel Well Design

Source Area of a Barn / Irrigation Well

Why is Nonpoint Source Pollution Different from Point Source Pollution of Groundwater?

- Scale
 - Millions of acres vs. 1-10 acres

- Intensity
 - Within ~1 order magnitude above MCL vs. many orders of magnitude above MCL
- Hydrologic Function
 - Recharge vs. non-leaky
- Frequency
 - Ongoing/seasonally repeated vs. incidental
- Heterogeneity & Adjacency

Focus: Enforcement Monitoring

Example of Working with a Regulation: Speed Limit

Focus: Enforcement Monitoring

Applying Point Source Approach to Nonpoint Source:

Alternative Monitoring Approach to Nonpoint Source:

Areas of Research Strengths

- Soil physics, hydrogeology, fate and transport in the subsurface
- Dairy system N, P fluxes, mass balances
- Engineering of facility isolation (liners)
- Monitoring well construction, sampling
- Dairy impact in alluvial aquifer systems
- Nitrate, pathogen impacts

Areas of Research Weakness

- Manure/nutrient management effects on groundwater
- Dairy groundwater research in non-alluvial groundwater systems
- N: atmospheric emissions / mass balance
- Impacts from:
 - Pathogens
 - Antibiotics and other pharmaceuticals
 - Steroid hormones
 - Antimicrobial resistance
 - Salts
- Effective monitoring & reporting systems
- Groundwater overdraft & clean recharge
Key Future Research Areas

- Management practice evaluation w/ respect to groundwater
 - "waste discharge" as function of mgmt practice
- "proxy" monitoring systems (instead of groundwater monitoring)
 - Nitrogen budget
 - Management practice evaluations
 - Soil / deep root zone monitoring
- Impacts from non-N contaminants in vulnerable systems
- Remediation / pump & fertilize / drinking water treatment
- Integration part of all of the above

Stakeholders

Environmental Issue

Law

Regulator

Vision for Regulating Nonpoint Sources of Groundwater

SCIENCE

- NPS source control
- NPS pollution soil/groundwater fate, transport
- NPS pollution assessment, monitoring
- REGULATORY FRAMEWORK
 - Enforcement: Paradigm shift in monitoring approaches
- AGRICULTURE (largest NPS!)
 - Socio-cultural change needed to work within new regulatory framework

Future of Groundwater Management in Agricultural Regions:

Opportunity for creative solutions to simultaneously address

- groundwater supply enhancement
- groundwater quality improvement
- drinking water protection
- High irrigation efficiency + High nutrient use efficiency + CLEAN groundwater recharge