An Update on Recharge Net Metering, with Distributed Stormwater Collection linked to Managed Aquifer Recharge (DSC-MAR)

A. T. Fisher¹, K. Camara², E. McCarthy, and L. Lurie² *In collaboration with* S. Beganskas^{1,3}, G. Gorski¹,
A. Serrano¹, J. Pensky¹, V. Bautista¹, and many others!

 ¹ Earth and Planetary Sciences Department University of California, Santa Cruz, CA
 ² Resource Conservation District – Santa Cruz County Santa Cruz, CA
 ³ Temple University, Philadelphia PA

Community Water Dialog of the Pajaro Valley *Watsonville Civic Center* 4 November 2019

Pajaro Valley Groundwater Basin

- PVWMA seeks to change water balance by ~12k af/yr: +supply, –demand
- PVWMA has BMP to achieve this goal, but will take time for implementation
- Water quality remains a concern throughout the basin
- Even if BMP is successful, PVGB still must deal with the legacy of overdraft
- Climate change and shifting land use will make it harder to balance basin

Would be beneficial to <u>generate</u> <u>additional supply</u>, <u>improve water</u> <u>quality</u>, and <u>engage stakeholders</u> PVDB – includes PVWMA service area plus adjacent drainage areas overlying the PVGB

Elevation (m) 265

Distributed Stormwater Collection – Managed Aquifer Recharge (DSC-MAR)

Bokariza-Drobac Ranch: Performance WY12-19

Reduce Barriers that Limit Participation

- Land taken from production, reduced access, crop impacts, liability
- Maintenance of infiltration systems (basins, dry wells, Flood-MAR fields)

Debris at inflow inlet

scraped

unscraped

Harkins Slough MAR basin

There is a Workable Example: Net Energy Metering

DCCE	For My Home 👻 About Contact Us Safety English 👻										
	Energy Supply	Energy Transmission & Stora	age Retail Energ								
Gas-Pipe Ranger											
Electric Generation Interconnection	Net Ene	rgy Metering									
Wholesale Generation	Net energy me	Net energy metering is a type of Distributed Generation that allows									
Distributed Generation	electric usage	electric usage with energy they export to the grid. A specially									
» Net Energy Metering	programmed "	programmed "net meter" will be installed to measure the difference between electricity the customer purchases and exports to the grid. The methods of applying credit for exported energy vary with the program.									
Qualifying Facilities Converting to Merchant Status	between election methods of ap										

- generate energy locally
- account for net usage
- excess power goes on the grid for sale (and eventual use)

Net Energy Metering

Net energy metering is a type of Distributed Generation that allows customers with an eligible power generator to offset the cost of their

electric usage with energy they export to the grid.

Requires

- reliable measurement and accounting
- formula to calculate benefit/rebate
- stakeholder and agency trust

Example: Recharge Benefit Calculations

Augmentation fee = \$246/ac-ft (*outside* of Delivered Water Zone, FY19-20)

Recharge Net Metering rebate: 50% of net infiltration

Example: Recharge Benefit Calculations

Example: Recharge Benefit Calculations

Recharge Net Metering (ReNeM) in the PVGB (five-year pilot program, 10/2016-9/2021)

- "Began" in Fall 2016
- Goal: ~1000 ac-ft/yr (≤10 field projects)
- Third-party certifier (TPC=RCD+UCSC) identifies sites, raises capital, develops engineering, plans/builds for measurement
- TPC works with landowners/tenants to validate, certifies performance, reports to agency
- Agency applies formula to calculate rebate (= credit)

<u>Program status</u>

One site operating, one more will begin operation in Winter 2019-20)

Two other projects constructed, but not part of program
 More sites in the queue for investigation

Regional infiltration projects*

Bokariza Ranch – infiltration basin, modified from existing

- Infiltration measured since WY12
- Operated/instrumented through WY20
- Kelly-Thompson Ranch infiltration basin, <u>new</u>
 - Funded, permitted, constructed!
 - Operating Winter WY20
- Storrs Winery⁺ infiltration basin, <u>new</u>
 - Installed Spring/Summer 2017
 - Operated/instrumented WY18-19
- Watsonville Airport+ drywell, <u>new</u>
 - Installed Fall/Winter 2017/18
 - Instrument/operated WY19

*External funding secured, in operation or active preparation *Not operating as part of ReNeM program

ReNeM Pilot Funding: Three Kinds of Support

- Capital costs
 site ID, design,
 engineering, installation
- Validation measurements, sampling, certification
- **Rebates (Incentives)** offset for operation and maintenance costs

Support is self-reinforcing...

In the PVGB:

Costs are competitive, program can be revenue positive

Kelly-Thompson Ranch

- Working ranch and rangeland
- >1300 acres draining into ~15 acres
- interest in improvement to water supply and water quality

Locations and areas (approximate)

Developed (620 acres)

Undeveloped/less developed (700 acres)

Potential infiltration area

Nearby infiltration project

Soil survey (drilling)

KT Project Concept and Timeline

- \checkmark Secured land-owner agreement
- \checkmark Surveyed site, DP drilling
 - needed for grant applications
- \checkmark Prelim. engineering design
- √ Grant applications submitted with RCD, PVWMA, local stakeholders – **Funded***
- √ Field experiments Summer 2016 to test infiltration properties, removal of nitrate
- $\sqrt{Permits}$, bids, supplemental support...

√ System construction: Summer 2019

*ReNeM helped to make this happen!

KT Project Engineering

• Test carbon-rich soil amendments

0

KT Ranch – Soil Amendments

How to Improve Water Quality during DSC-MAR?

Field and laboratory studies:

- What are relations between infiltration rate, microbial activity, and nitrogen cycling?
- How can the use of a permeable reactive barrier (PRB) impact these relations?
- How can development and use of a low-cost PRB improve water quality during MAR?

Experimental configuration

Beganskas et al. (2018)

Tests at Kelly-Thompson Ranch

- Native soil (NS):
- little change in carbon or nitrate with depth
- Nitrate isotopes consistent

Tests at Kelly-Thompson Ranch

Wood chips (WC):

- Carbon increases, nitrate decreases with depth in soil

<u>Biochar (BC)</u>:

- Similar pattern, but more in the PRB than underlying soil

- Nitrate isotopic shift

Shifts i	in I	m	ic	ro	b	ia		e	0	lc	g	У	N	/it	h	İI	nf	ilt	tr	at	tic	DN	+	P	RI	B	
Defense	<	<	<	<		<	<	<	<	<	•		<u>ک</u>	0	0	•	0	0	0	0	0	0	0	0	0	0	NS
Betore	<		<	<	<	<	<	<	<	<	0	C)0	0	<u>C</u>)0	0	•	0	0	•	0	•	0	0	0	PRB
	•	<	•	<	<	•	•	•	<	0	٩	\Box))			þ	0	0	0	0	0	0	0	0	0	0	NS
After		C	Ì)0	0	C)0	0	0	C)•	0	0	0	0	•	•	•	0	•	•	0	•	•	•	0	PRB
OTUs	Novosphingobium (g) 🖈 🔳 🔺	Rhodovulum (g) 🖈 🔺	Comamonadaœae (f)	Erythrobacteraceae (f) 🖈 🔳	Prosthecobacter (g) 🖈	Verrucomicrobiaceae (f)	Caulobacteraceae (f) 🖈 🔳	Comamonadaœae (f); Other ● ▲	Myxococales; OM27 (f)	Sphingobium (g)	Nitrospiraceae (f)	GAL15 (p)	Acidobacteria-6; iii 1-15 (o)	Gemmatimonadetes; Gemm-1 (c)	Syntrophobacteraceae (f)	Rhizobiales (o)▲	Methanomassiliicoccaceae (f)	WS3; PRR-12; Sediment-1 (o)	Betaproteobacteria, IS-44 (o)	Actinobacteria; MB-A2-108; 0319-7L14 (o)	Actinobacteria; MB-A2- 108 (o)	Betaproteobacteria; MND1 (o)	Chloroflexi; ⊟lin6529 (o) ▲	Acidimicrobiales (o)	Nitrospira (g) 🗬	Acidobacteria; DA052; Blin6513 (o)	

Putative functions

- ★ Nitrate reduction
- ▲ N-fixation
- Denitrification
- Nitrite oxidation
- Hydrocarbon degradation

Relative abundance (diameter)

<	<0.1%
O ↔	1%
\bigcirc	3%

Beganskas et al. (2018)

Bokariza-Drobac: WY 19

Stormwater sampling, Winter 2018-19

• Agreement on terms, requirements, liability, obligations.

- Between UCSC, RCD, and participants (Phases 1/2, access)
- Between water agency, participants (Phase 3, rebates)
- One full package is complete

- Agreement on terms, requirements, liability, obligations.
- Permits, "reasonable and beneficial," public benefit?

Miller, K., N. G. Nylen, H. Doremus, D. Owen, and A. T. Fisher (2018), Issue brief: Groundwater recharge and beneficial use, Center for Law, Energy & the Environment, University of California at Berkeley, Berkeley, CA, 10.15779/J22D1H.

- Agreement on terms, requirements, liability, obligations.
- Permits, "reasonable and beneficial," public benefit?
- Establish and apply templates, best practices

Each site is different, requires careful design and operation

- Agreement on terms, requirements, liability, obligations.
- Permits, "reasonable and beneficial," public benefit?
- Establish and apply templates, best practices
- Misunderstandings

- Recharge ≠ storage
- Infiltration vs. recharge
- FloodMAR
- Stormwater
- Biggest risk is not from "not recharging"

ReNeM: Ongoing Work, Next Steps

- Encourage stakeholders to complete program paperwork
- Manage operating projects maximize supply and quality benefits, maintain systems
- Collect water quality data from surrounding wells (in discussion with PVWMA staff, link to regional monitoring)
- Write annual reports for each project (once formally approved)
- Find new sites and partners
- Raise project funds: design, build, validate (repeat)
- Train personnel, make progress, address challenges.
- Avoid getting discouraged: giving up is not an option...

ReNeM: A Team Effort

Many partners, helpers, students, agencies, stakeholders, tenants, collaborators...

