The National Multi-Model Ensemble for Seasonal Forecasting

November 17, 2021
Forecasting the Water Year

- **Fall (September/October/November)**
 - Antecedent Conditions
 - Precipitation Onset
 - Temperature Anomaly
 - Soil Moisture State with Snowpack Initiation
- **Winter (December/January/February)**
 - Wet/Dry
 - Notable Anomalies
- **Spring (March/April/May)**
 - Late-Season Bailout or Early Shutoff?
 - Peak Snowpack Melt Timing and Magnitude

Think about how NMME or other forecasts feed information into this framework
Talk Takeaways

- What is an ensemble and why use it?
- Sources of climate variability
- WY 2022 Outlook with some links to sources
What is the NMME and what is an ensemble?

• NMME – **National Multi-Model Ensemble** is a collection of dynamic models predicting the earth system evolution out to 6 months.

• An ensemble is a group which in forecasting is the group average prediction which has been shown to have more predictive power than any individual model.
Temperature and Precipitation Prediction

https://www.cpc.ncep.noaa.gov/products/NMME/seasanom.shtml

<table>
<thead>
<tr>
<th>Three-month mean spatial anomalies</th>
<th>Season 1</th>
<th>Season 2</th>
<th>Season 3</th>
<th>Season 4</th>
<th>Season 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global SST</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Global prate</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Global tmp2m</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>US prate</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>US tmp2m</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skill maps for 3-month means</th>
<th>Season 1</th>
<th>Season 2</th>
<th>Season 3</th>
<th>Season 4</th>
<th>Season 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global SST</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Global prate</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>Global tmp2m</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>US prate</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
<tr>
<td>US tmp2m</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
<td>🔴</td>
</tr>
</tbody>
</table>

Anomalies with Skill Masks Applied
Ensemble Prediction
Atmosphere Conditions October 2021

Mid-Atmosphere Pressure

Jet Stream

Graphics from ENSO Diagnostic Discussion of 11/1/2021
Madden Julian Oscillation

- Sub-seasonal variability
- Tropical Convective Energy and its movement influence extratropical outcomes
- Mapped as phase and strength
Polar Conditions Northern Hemisphere

https://www.nohrsc.noaa.gov/nh_snowcover/
Land Surface Conditions October 2021

https://www.drought.gov/topics/vegetation#data-maps-tools
NMME - Outlooks

DJF Temperature

DJF Precipitation
NMME – Outlooks with Skill Mask

DJF Temperature

DJF Precipitation
Summary Thoughts

• NMME is a baseline experimental comparison for seasonal prediction
• An ensemble outperforms individual model simulations in most cases
• Land/Ocean/Ice/Atmosphere relationships are changing as the world warms
• Models help to form expectations, but are not perfect predictors
• Understanding physical processes and their interactions are key to successful seasonal forecasting
Questions?

• Email: Michael.L.Anderson@water.ca.gov
• media@water.ca.gov