## NASA Science Mission Directorate Earth Science Division Applied Sciences Program



Water Resources Application Area September 27-28, 2012



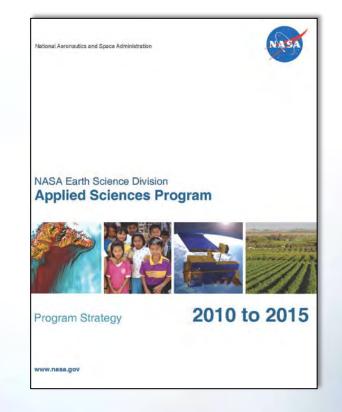
## **Applied Sciences Program Goals**

### **Goal 1: Enhance Applications Research**

Advance the use of NASA Earth science in policy making, resource management and planning, and disaster response.

*Key Actions:* Identify priority needs, conduct applied research to generate innovative applications, and support projects that demonstrate uses of NASA Earth science.

### **Goal 2: Increase Collaboration**


Establish a flexible program structure to meet diverse partner needs and applications objectives.

*Key Actions:* Pursue partnerships to leverage resources and risks and extend the program's reach and impact.

### **Goal 3: Accelerate Applications**

Ensure that NASA's flight missions plan for and support applications goals in conjunction with their science goals, starting with mission planning and extending through the mission life cycle.

*Key Actions:* Enable identification of applications early in satellite mission lifecycle and facilitate effective ways to integrate end-user needs into satellite mission planning.





## **Applications Areas**



## **Emphasis** in **four Applications Areas**



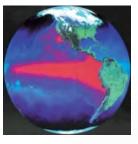
**Health & Air Quality** 



Water Resources



**Disasters** 




**Ecological** Forecasting

### Seek opportunities to expand to five additional areas



Agriculture



Climate



Weather



Energy



Oceans

## **Applications Areas**



# Emphasis in four Applications Areas



Health & Air Quality



Water Resources



**Disasters** 



Ecological Forecasting Formal Applications programs in these areas

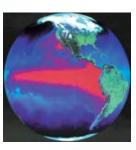
Clear, definite goals and investment plans

Distinct Program Manager & Associates

Generating significant applications and transitions as well as in-depth partnerships

Applications that Capacity Building elements can draw on




Ad hoc, informal activities in these areas

Capacity Building elements can do activities in these areas; however, there won't be as rich an applications base to draw on as in the emphasized Apps Areas

Examples: GEO Agriculture Task National Climate Assessment

# Seek opportunities to expand to five additional areas





PICICAL EXAMPLE Selif Starkall

Agriculture

Climate

Weather



Energy



Oceans



# Emphasis in four Applications Areas

# Seek opportunities to expand to five additional areas



For all of the Applications Areas, we need to have a ~5-year plan. Plan will be based on market research identifying key needs, and plan will articulate priority activities for ESD/Applied Sciences for the area.



For Emphasized Areas:

- Plan articulates what we will do and when, such as solicitations, to address key needs and priorities



For Additional Areas:

- Plan articulates what we would do if ESD had a application area in this topic



Weather



Disa





National Aeronautics and Space Administration

### **Applied Sciences Program**

Discovering Innovative & Practical Applications of NASA Earth Science

#### Home

About Applied Sciences Applications & Capacity

Building

Solicitations

Documents & Resources

News & Events

Links

e-Books





The Applied Sciences Program's Ecological Forecasting application area was featured in a recent Space News article. Read More >>

1 2 3

#### Earth Science Serving Society

The Applied Sciences Program promotes and funds activities to discover and demonstrate innovative uses and practical benefits of NASA Earth science data, scientific knowledge, and technology. The Program's portfolio of projects deliver results in applying NASA Earth science to support improvements in aviation safety, malaria early warning, agricultural productivity, water management, earthquake response, and many other important topics. The Applied Sciences Program partners with public and private organizations on ways to apply data from NASA's environmental satellites and scientific findings in their decision-making activities and services, helping to improve the quality of life and strengthen the economy.

#### Applied Sciences Program

News & Events

**Applications Areas** 

**Capacity Building** 

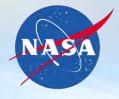
#### Application Areas



The Program focuses on economic, health, natural resources, and other themes to support both applied research and targeted, decision-support projects in 9 areas of national priority.

| Disasters              | Agriculture |  |
|------------------------|-------------|--|
| Ecological Forecasting | Climate     |  |
| Health & Air Quality   | Energy      |  |
| WaterResources         | Oceans      |  |
|                        | Weather     |  |

## Applied Sciences and Water Resources Team




- Lawrence Friedl, Associate Director, Applied
   Sciences Program
  - Bradley Doorn, PM, Water Resources Application Area
  - <u>Forrest Melton</u>, Associate PM, Water Resources Application Area
  - <u>Karen Mohr</u>, Associate PM, Water Resources Application Area
  - <u>Christine Lee</u>, AAAS Fellow, NASA
  - Nancy Searby, PM, Capacity Building
  - <u>Woody Turner</u>, PM, Ecoforecasting Application Area
  - <u>John Haynes</u>, PM, Health and Air Quality Application Area
  - Frank Lindsey, PM, Disasters Application Area



# Good morning.

## Christine M. Lee AAAS Science and Technology Policy Fellow



## What is a fellow?





- Bring scientists and engineers to Washington to participate in the policy
- 1-2 year fellowships
- Placements in executive branch agencies depending on a program area (Health/Human Services, Energy/Environment/Ag, Diplomacy/Security/Defense)
- Placements in congressional offices (House Reps, Senators)

## Becoming a fellow



- Essays (three external reviews)
- Semi-finalists are interviewed (memos)
- Placement week interviews (7-14 interviews in a week to find your matching office)
- Placements!

## Being matched w/ NASA Applied Sciences





## Being matched w/ NASA Applied Sciences





## Being matched w/ NASA Applied Sciences





## Antarctica (from Scott Base, not McMurdo).



# 0.3% of Antarctica is ice free, often considered a Mars analog environment.

## Overlying drivers.

How do we develop the best toolkit and approach for monitoring environmental (& public) health? How do we connect the data collected with evidencebased policy/practices and with the public?



### NASA Applied Sciences Vision

"...for public and private organizations routinely and seamlessly integrate Earth observations in their decision making activities and demand additional observation types and Earth science knowledge."

### AAAS S&T Fellowships

"...to provide the opportunity for accomplished scientists and engineers to participate in and contribute to the federal policymaking process while learning firsthand about the intersection of science and policy."

Los Angeles Times Photo

### Applied Sciences Program Water Resources

# NASA

### **Objective/Scope**

Discovers and demonstrates applied uses of Earth Observations that address policy and decision processes related to water supply and demand. The Water Resources program funds applied research and applications projects in key functional categories; such as irrigation, flow and flood forecasting, drought monitoring, water quality, snow melt, and climate impacts.

Major partners and end-users: DOI, NOAA, USACE, DOS, State DWR's, Local Water Authorities, Intl-NGOs.

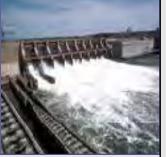
Upcoming events:

- ROSES 2012-13 Solicitation
- ROSES 2011 Feas. trans to Dec.

### **Key Programmatic Interfaces**

#### Intra-agency.

-Water-Energy Cycle Research -Missions: SWOT, SMAP, LDCM, GRACE-FO/II


### Inter-agency.

- Multiple Federal Agencies
- Western States Water Council/WestFAST

-Surface Water and Water Quality Subcommittee (CENRS)

### International.

- USAID
- -Agriculture and Water Tasks, Group on Earth Observations
- DOS Water



### **Accomplishments**

**US Drought Monitor.** Project reached milestone to integrate GRACE-based indicators into US Drought Monitor for monthly drought maps used in disaster payments, tax deferrals, etc.

**Global Lake/Reservoir Monitor.** Developed a system to extract height changes of major in-land reservoirs from radar altimetry measurements from Jason/TOPEX now utilized by USDA, USAID and multiple other agencies including DoD. NASA's SWOT mission will continue effort.

**Global Agriculture Monitoring.** Enhanced the capability of USDA to monitor global agriculture commodities for US market price discovery by seamlessly integrating NASA earth observation data and science into its process for determining this Principle Federal Economic Indicator.

### **Major Issues**

- A. Integrate Deputy Program Application Leads into SMAP, SWOT, and GRACE-FO mission development activities.
- B. ROSES 2012 Solicitation.
- B. Project/budget tracking system as well.
- C. Water Resource challenges rising around the globe.

Historic U.S. Drought in 2012

Global Water Supply-Demand gaps turning in to more and more societal impacts (e.g. food, energy, political strain, ...)

## DROUGHT SOLICITATION: Key Statistics: Recommended Proposals

| PI Last name | Title                                                                                                                                                                                  | Proposing Organization             |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--|--|
| VERDIN       | Fallowed Area Mapping for Drought Impact Reporting and Decision Making                                                                                                                 | GEOLOGICAL SURVEY US DEPT          |  |  |
| PAINTER      | Integration of precision NASA snow products with the operations of the Colorado Basin River Forecast Center to improve decision making under drought conditions                        | CALIFORNIA INSTITUTE OF TECHNOLOGY |  |  |
| HAIN         | Development of a Mult-Scale Remote Sensing Based Framework for Mapping Drought over North America                                                                                      | UNIVERSITY OF MARYLAND             |  |  |
| JUDGE        | Integration of remote sensing observations and a web-based decision support<br>system for managing impacts of agricultural droughts on crop yields in<br>heterogeneous landscapes      | UNIVERSITY OF FLORIDA              |  |  |
| BIRKETT      | The Global Reservoir and Lake Monitor (GRLM): Expansion and<br>Enhancement of Water Height Products.                                                                                   | UNIVERSITY OF MARYLAND             |  |  |
| MELTON       | Mitigation of Drought Impacts on Agriculture through Satellite Irrigation<br>Monitoring and Management Support                                                                         | NASA AMES RESEARCH CENTER          |  |  |
| VIVONI       | Cloud Computing-based Delivery of Drought Information at Multiple Scales                                                                                                               | ARIZONA STATE UNIVERSITY           |  |  |
| JUSTICE      | Global monitoring of agricultural drought: A contribution to GEO GLAM                                                                                                                  | UNIVERSITY OF MARYLAND             |  |  |
| DOZIER       | Assessing Water Resources in Remote, Sparsely Gauged, Snow-Dominated Mountain Basins                                                                                                   | UC, SANTA BARBARA                  |  |  |
| KRAKAUER     | Application of Evapotranspiration and Soil Moisture Remote Sensing Products<br>to Enhance Hydrological Modeling for Decision Support in the New York City<br>Water Supply              | RFCUNY - CITY COLLEGE              |  |  |
| ROSENZWEIG   | Adaptation Planning for Climate Change Impacts using Advanced Decision<br>Support and Remote Sensing: Irrigated Agriculture in California's Central<br>Valley                          | NASA/GODDARD SPACE FLIGHT CENTER   |  |  |
| MARGULIS     | Investigating the Feasibility of Incorporating Remote Sensing and Earth<br>Science Datasets into Existing Frameworks for Improving Water Supply and<br>Drought Forecasts in California | UC, LOS ANGELES                    |  |  |
| Wardlow      | The Quick Drought Response Index (QuickDRI): An Integrated Approach for                                                                                                                | UNIVERSITY OF NEBRASKA, LINCOLN    |  |  |

## .....with Stakeholders



| PI Last name | Title                                                                                                                                                                                     | Proposing Organization                | Stakeholder Organization                                   |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|------------------------------------------------------------|
|              | Fallowed Area Mapping for Drought Impact<br>Reporting and Decision Making                                                                                                                 | GEOLOGICAL SURVEY US<br>DEPT          | NATIONAL INTERAGENCY DROUGHT INFORMATION SYSTEM<br>(NIDIS) |
| PAINTER      | Integration of precision NASA snow products<br>with the operations of the Colorado Basin<br>River Forecast Center to improve decision<br>making under drought conditions                  | CALIFORNIA INSTITUTE OF<br>TECHNOLOGY | COLORADO RIVER BASIN FORECAST CENTER                       |
| HAIN         | North America                                                                                                                                                                             | UNIVERSITY OF MARYLAND                | UNITED STATES DROUGHT MONITOR (USDM)                       |
| JUDGE        | Integration of remote sensing observations<br>and a web-based decision support system for<br>managing impacts of agricultural droughts on<br>crop yields in heterogeneous landscapes      | UNIVERSITY OF FLORIDA                 | PRIVATE SECTOR                                             |
| BIRKETT      | The Global Reservoir and Lake Monitor<br>(GRLM): Expansion and Enhancement of<br>Water Height Products.                                                                                   | UNIVERSITY OF MARYLAND                | U.S. DEPARTMENT OF AGRICULTURE                             |
| MELTON       | Mitigation of Drought Impacts on Agriculture<br>through Satellite Irrigation Monitoring and<br>Management Support                                                                         | NASA AMES RESEARCH<br>CENTER          | WESTERN GROWERS ASSOCIATION, CA DWR                        |
|              | Cloud Computing-based Delivery of Drought<br>Information at Multiple Scales                                                                                                               | ARIZONA STATE UNIVERSITY              | DEPARTMENT OF STATE                                        |
|              | Global monitoring of agricultural drought: A contribution to GEO GLAM                                                                                                                     | UNIVERSITY OF MARYLAND                | U.S. DEPARTMENT OF AGRICULTURE                             |
|              | Assessing Water Resources in Remote,<br>Sparsely Gauged, Snow-Dominated Mountain<br>Basins                                                                                                | UC, SANTA BARBARA                     | US CORPS OF ENGINEERS                                      |
| KRAKAUER     | Application of Evapotranspiration and Soil<br>Moisture Remote Sensing Products to<br>Enhance Hydrological Modeling for Decision<br>Support in the New York City Water Supply              | RFCUNY - CITY COLLEGE                 | NEW YORK CITY                                              |
| ROSENZWEIG   |                                                                                                                                                                                           | NASA/GODDARD SPACE<br>FLIGHT CENTER   | U.S. BUREAU OF RECLAMATION                                 |
| MARGULIS     | Investigating the Feasibility of Incorporating<br>Remote Sensing and Earth Science Datasets<br>into Existing Frameworks for Improving Water<br>Supply and Drought Forecasts in California | UC, LOS ANGELES                       | LOS ANGELES, CA                                            |
|              | The Quick Drought Response Index                                                                                                                                                          |                                       |                                                            |



## Water Resources in the Earth Science Division



## Applied Remote Sensing Training (ARSET): Water Resources and Disaster Management



## Professional online and handson courses.

## http://water.gsfc.nasa.gov

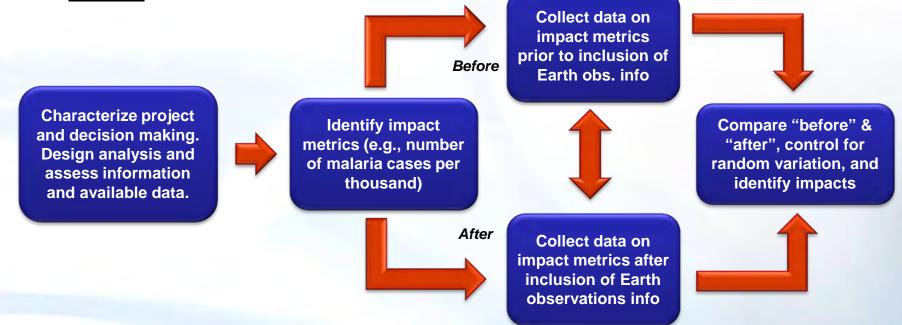
- Flooding/Drought: (TRMM/, MERRA, NLDAS): Latin America (Colombia/GEO, November 2011); South Central U.S. (U. of Oklahoma, June 2012)
- Coming up: Courses on snow satellite and model products: local and state agencies in California and Colorado River Basin, World Bank (Fall 2012/Spring 2013).
- Online course: Development of evapotranspiration topics and other land products (Spring 2013)



ARSET works directly with Applied Science PIs. **We can help disseminate applied research & decision support tools.** Ana.I.Prados @nasa.gov

## **Applications Readiness Levels**




| <ul> <li>ARLS</li> <li>9. Approved, Operational Deployment and Use in Decision Making.</li> <li>8. Application Completed and Qualified.</li> </ul> | Partner<br>Demonstration<br>and Transition |    | TRL 9<br>-<br>TRL 8<br>-<br>TRL 7 |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----|-----------------------------------|
| <ol> <li>Application Prototype in Partners'<br/>Decision Making.</li> </ol>                                                                        | Development Test                           |    | –<br>TRL 6<br>–                   |
| 6. Demonstrate in Relevant Environment.                                                                                                            | Development, Test,<br>and Validation       |    | TRL 5                             |
| 5. Validation in Relevant Environment.                                                                                                             |                                            |    | –<br>TRL 4                        |
| 4. Initial Integration and Verification (in Laboratory Environment).                                                                               |                                            | ٢L | –<br>TRL 3                        |
| 3. Proof of Application Concept.                                                                                                                   | Discovery and                              |    | -                                 |
| 2. Application Concept .                                                                                                                           | Feasibility                                |    | TRL 2                             |
| 1. Basic Research.                                                                                                                                 |                                            |    | –<br>TRL 1                        |
|                                                                                                                                                    |                                            |    |                                   |

## Impact Analyses



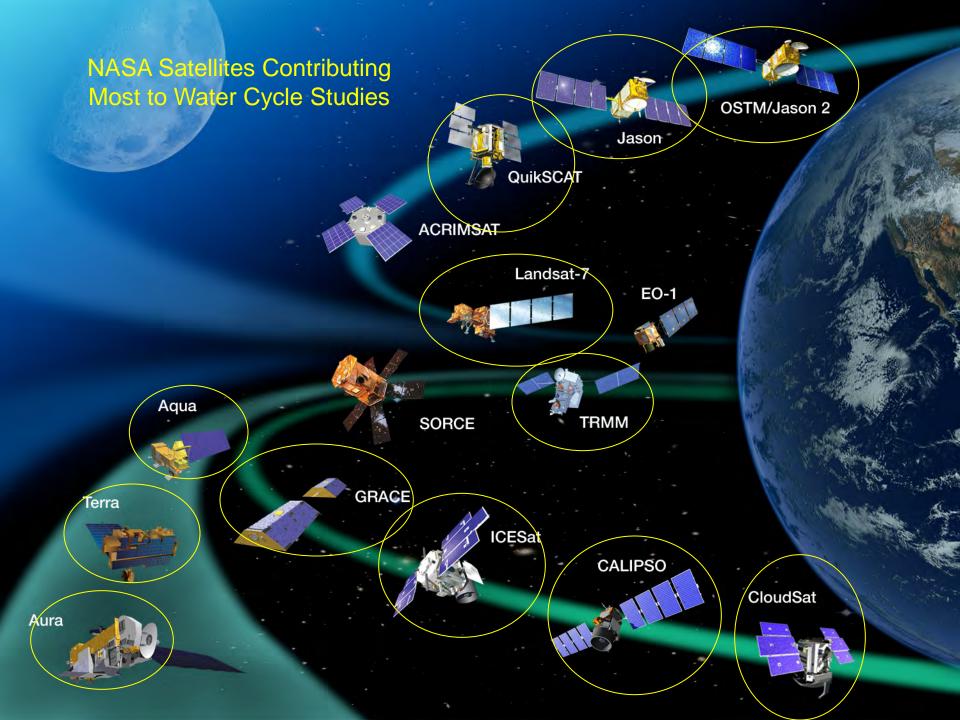
### **General Approach**

The analysis used an adapted expected value of information (VI) methodology to assess the benefits. The value of information is a function of the benefits that result from a decision *with* information compared to the decision that would have been made *without* the information.



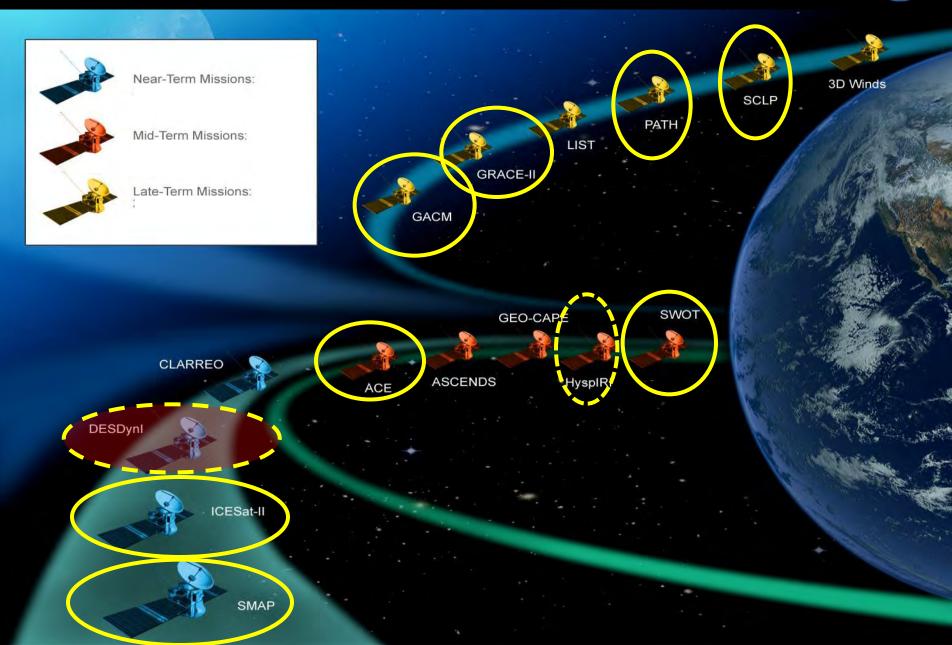
Using this approach, the value of information provided by a project would be:

Value of Earth obs. info = (Outcome with information – Outcome without information)




## Satellite Mission Update: Water Resource Applications

Remote Sensing Workshop 27-28 September 2012


## Earth Science



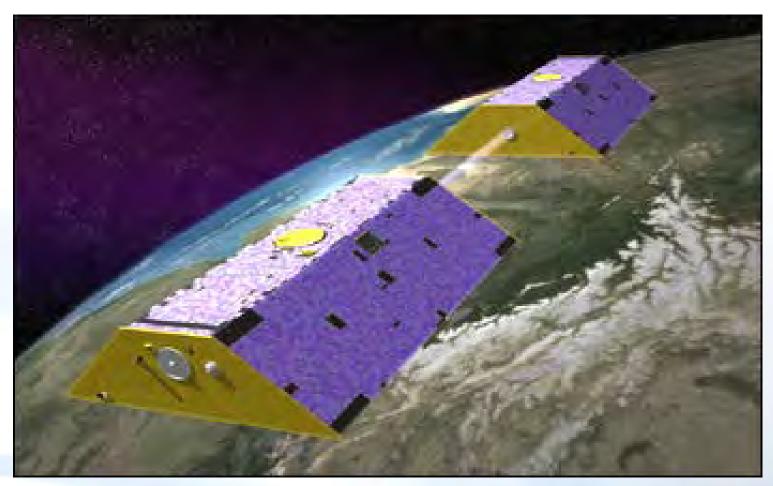


## **Decadal Survey Missions Next Generation**





Applications Lead– Bradley Doorn DPAs – Molly Brown, GSFC And Son Nghiem, JPL


## The NASA oil Moisture Active Passive (SMAP) Mission: Drought Monitoring

....global mapping of soil moisture at a 10-km spatial resolution with a 2-3 day revisit time

## **GRACE and GRACE-FO**



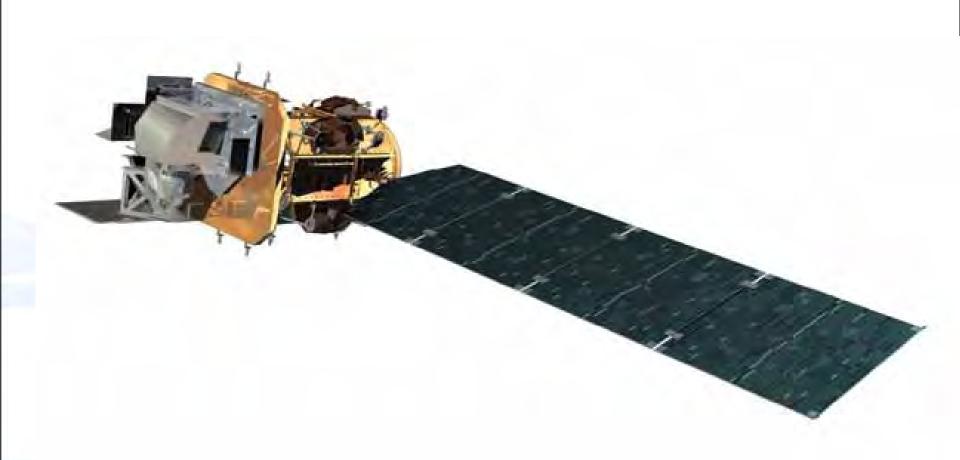
### Application PM – Doorn, DPA – Erik Ivins, JPL; John Bolten, GSFC



**Gravity Recovery and Climate Experiment** 



## Surface Water and Ocean Topography (SWOT) Mission

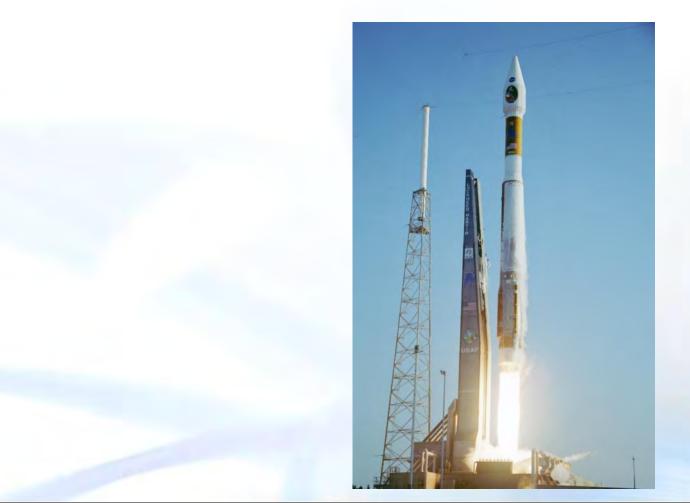





Applications Lead – Bradley Doorn, HQ DPAs - Margaret Srinivasan, JPL and Craig Peterson, SSC

## Landsat Data Continuity Mission (aka Landsat 8)






Courtesy of Orbital

## Launch Vehicle



• Launch from Vandenberg Air Force Base on an Atlas V



## Water Resources Application Area Review



## Questions



Bradley Doorn, Bradley.Doorn@nasa.gov Christine M. Lee, Christine.M.Lee@nasa.gov