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USGS California Water Science Center (CAWSC)

One of 28 Centers in US

Provides foundational data and
scientific analyses to address the
water issues facing the nation.

Conducts hydrologic monitoring

Partners with state, regional,

local, tribal, and federal entities

to address key CA water issues:
= Water supply and availability

= Water quality assessments and
sediment dynamics

= Climate change, variability,
droughts, and floods

= Aquatic ecology
= Groundwater availability and use




Lake Tahoe Basin
Minimum Air Temperature

Minimum Air Temperature
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11 of the last 20 years have average
minimum air temperatures above 0 C



Lake Tahoe Basin
Minimum Air Temperature

Minimum Air Temperature
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By mid century all years have average
minimum air temperatures above 0 C



Lake Tahoe Basin
Precipitation

Precipitation
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Model consensus Is poor, but nearly all models
project more variability, higher extreme years,
more droughts
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Basin Characterization Model

SNOW PROCESSES CLIMATE INPUTS ENERGY BALANCE

Sublimation ‘ Precipitation Solar radiation ‘ :
- A grid-based water balance

model

Snow Air Potential

accumulation temperature evapotranspiration e Uses gridded climate data
- — downscaled to fine spatial
Snowmelt ‘ atershe : :
available water scales 270-m (historical
t
(Bxcess water) VEGETATION and fUture)
WATER BALANCE & LANDSCAPE . :
Soil profile — * Incorporates detailed soll

evapotrans- properties and estimates of
i bedrock permeability

Total Soil Porosity ~30-70%

Plant al'aflab!e

... Wilting Point__. 3" » Calculates spatially

) e F’:"j”"’: : mﬁgn;;%cdt distributed water supply as
earoc
L oo (PET-AED) recharge and runoff
 Calculates climatic water
Local Basin
recharge discharge

deficit as an estimate of
Basin
Local runoff groundwater
recharge -
aUSGS

Soil Water Potentjal, MPa

demand and stress
WATER SUPPLY

science for a changing world
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Sum of Sierra Nevada Regions

Runoff
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Sacramento River, San Joaquin River, Tulare Lake regions



Sum of Sierra Nevada Regions
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Runoff (bars) and Recharge (line) in California

Sacramento River, San Joaquin River, Tulare Lake regions



Extreme Water Supply in the Future
Recharge + Runoff

Water Supply
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Number of peak days per decade (top 5%)

RCP 4.5 RCP 8.5
(mitigated emissions) (business-as-usual)
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Take home message:
more sediment transport, erosion = water quality issues



Recharge and runoff

Recharge infiltrates into the soll
and beyond plant roots

It stays in the watershed longer
than runoff to produce late
season baseflows

Runoff moves downhill to
reservoirs or leaves the
watershed



Recharge and Runoff In Sierra Nevada
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Average Historical
Recharge 249 mm/yr
Runoff 410 mm/yr

Average Future
Recharge 362 mm/yr
Runoff 538 mm/yr

Average Future
Recharge 296 mm/yr
Runoff 405 mm/yr

Average Future
Recharge 242 mm/yr
Runoff 273 mm/yr

Recharge goes up or or doesn’t change in dry conditions
Runoff ranges from a large increase to a large decrease



What about snow?

It stores our water supply so we

can use it when there’s no

precipitation

— Creates baseflows lasting through
the summer

It reduces environmental demand

as the seasonal temperatures

rise and the ET season ramps up

INn spring and summer

Provides snow dependent habitat



Sn owpac k April 1 Percent of Average

2018 527%
2016 85%
2014 257%
2013 407
2012 507%
2011 171%
2010 1047%
2009 83%
2008 1027%

2007 39%




Changes in April 15t snowpack (SWE)
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What about the futures?

April 1st Snow Water Equivalent
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Implications for Sierra
headwaters

* As snowpack/cover Is reduced,
what happens to our water
supply....runoff, recharge?

 What are the implications of
Increased environmental
demand?




Hotter and longer dry seasons
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Forest die-off

=) MoOre Landscape Stress



Climatic Water Deficit

Annual evaporative demand
that exceeds available water

Potential — Actual Evapotranspiration
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Integrates climate, energy loading, drainage, and
available soil moisture storage

Addresses irrigation demand
Defines level of stress on landscape



Climatic Water Deficit

Annual evaporative demand
that exceeds available water

Potential - Actual
Evapotranspiration

2001

mm/yr
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= USGS

science for a changing world



Extreme CWD in the Future

Climatic water deficit
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Question: what
happens to the water
In my basin if the
trees die?
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Merced River Basin Forest Die-off 2015

[] Alpine-Dwarf Shrub
[] Annual Grassland
I Barren
] Blue Oak-Foothill Pine
Il Blue Oak Woodland
Il Chamise-Redshank Chaparral
M Jeffrey Pine
B Juniper
[ Lacustrine
Il Lodgepole Pine
[7] Mixed Chaparral
Il Montane Chaparral
1] Montane Hardwood-Conifer

[ ] Montane Hardwood

[ Perennial Grassland
[ Riverine

I Red Fir

Il Subalpine Conifer
[] Sagebrush

M Sierran Mixed Conifer

Foothill Pine B Wet Meadow

I Rock Cliff Scree

PO n d e r O S a PI n e [] Annual Grassland North

I Mixed Chaparral South

(35% Of t fees I N b as | N ) [] Montane Hardwood South




Hydrology with baseline vegetation

—8— Actual evapotranspiration
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Sensitivity of summer flows to
reduction In tree density

Late season streamflow

Basin discharge (m3)

july aug

Change in streamflow
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What to expect in a Sierra
Nevada with less snow

Refugia such as meadows and fens will
likely provide early warning to declines in
snowmelt and recharge

 may continue to provide habitat for snow
dependent and rare species

« —>Monitor widely to prioritize management
Other sensitive areas such as riparian

zones may also provide clues as to the
watersheds most at risk

« —>Streamflow monitoring at multiple
elevations in a watershed



Recharge and Runoff

Earlier snowmelt = changes in
timing of streamflow, longer dry
season, lower late season baseflows

More peak flows, carry more
sediment and water guality
constituents

Recharge goes up under wet futures
but doesn’t change in very dry ones
- more resilient to future climates
than runoff

Recharge sustains meadows and
potential climate refugia



Implications to Forests

Increasing temperatures change the
timing of forest growth and the suitability
of habitat for different species -
structure of the forests and their species
and ecosystems will change

Increasing climatic water deficit stresses
the forested landscape, increasing forest
die-off and fire risk

Forests can be managed to reduce
stress, increase summer baseflows, and
sequester carbon






